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Exercise 3: Line loads and Dirac deltas
08.11.2024 - 11.11.2024

Question 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figures (A)–(D) show a beam of length a which is mounted on a wall at point A. A line load is imposed on the beam.
(a) Calculate the bending moment about the y-axis and the force in z-direction at point A!
(b) Each line load can be replaced by an equivalent point load, which generates the same moment and force at the

support. Find the magnitude and line of action of this force!
Note: Introducing an equivalent force as in part (b) is useful for calculating reaction forces at supports. However,
such a replacement must not be made when calculating internal forces!

Solution:
(a) Forces and moments

The problem is statically determinate, therefore we can find the reactions at the support either (1) by requiring
equilibrium between them and the resultants of the line load, or (2) by determining the internal forces and
moments and evaluating them at x = 0. Note that both solutions require us to evaluate integrals, but in a
different context. In method 1, we need integration to determine the resultant of the line load. In 2, we solve
the differential equations dQ(x)/dx = −q(x) and d2M(x)/dx2 = −q(x), which we derived in class.

Method 1 In all four cases the beam is parallel to x. The applied line load is directed in positive z-direction
and may vary along x. For the purpose of calculating the reaction forces, the line load is equivalent to an
external point force in positive z-direction with the magnitude∫ a

0

q(x)dx.

The resultant moment is

−
∫ a

0

q(x)xdx.
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The minus sign on the second integral reflects the fact that the resulting moment acts in clockwise (mathemat-
ically negative) direction about the y-axis. We need to compute the integrals above to find the reactions at
A.
Let Az be the force in z-direction at A, andMA the moment about the y-axis. Their sense is indicated in the
figure below. Computing the integrals and requiring equilibrium leads to the following solutions:

(A) ∫ a

0

q(x)dx =

∫ a

0

q0dx = q0a

−
∫ a

0

q(x)xdx = −
∫ a

0

q0xdx = −1

2
q0a

2

↓ −Az + q0a = 0 =⇒ Az = q0a

A −MA − 1

2
q0a

2 = 0 =⇒ MA = −1

2
q0a

2

(B) ∫ a

0

q(x)dx =

∫ a

0

q0
x

a
dx =

1

2
q0a

−
∫ a

0

q(x)xdx = −
∫ a

0

q0
x2

a
dx = −1

3
q0a

2

↓ −Az +
1

2
q0a = 0 =⇒ Az =

1

2
q0a

A −MA − 1

3
q0a

2 = 0 =⇒ MA = −1

3
q0a

2

(C) ∫ a

0

q(x)dx =

∫ a

0

q0

(
1− x

a

)
dx =

1

2
q0a

−
∫ a

0

q(x)xdx = −
∫ a

0

q0

(
x− x2

a

)
dx = −1

6
q0a

2

↓ −Az +
1

2
q0a = 0 =⇒ Az =

1

2
q0a

A −MA − 1

6
q0a

2 = 0 =⇒ MA = −1

6
q0a

2

(D) ∫ a

0

q(x)dx =

∫ a

0

q0

[
1

4
− 1

a2

(
x− a

2

)]
dx =

1

6
q0a

−
∫ a

0

q(x)xdx = −
∫ a

0

q0

[x
4
− x

a2

(
x− a

2

)]
dx = − 1

12
q0a

2

↓ −Az +
1

6
q0a = 0 =⇒ Az =

1

6
q0a

A −MA − 1

12
q0a

2 = 0 =⇒ MA = − 1

12
q0a

2

Method 2 Recall the differential equations for the internal transversal force Q(x) and the momentM(x),
dQ

dx
= −q(x),

d2M(x)

dx
= −q(x).
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In problems (A)–(D) there are no discontinuities which would require us to partition the beam into sectors.
Integrating the equation above will lead to two unknown constants C1 and C2. Problems (A)–(D) have the
same set of boundary conditions, Q(a) = 0 and M(a) = 0. Below is the solution for the integrals and the
constants with these boundary conditions. Evaluating Q(x) andM(x) at x = 0 gives the reaction force and
moment at x = 0, respectively.

(A) Integration yields:

Q(x) = −q0x+ C1, M(x) = −1

2
q0x

2 + C1x+ C2.

Application of boundary conditions Q(a) = 0 andM(a) = 0 gives

C1 = q0a, C2 = −1

2
q0a

2.

Substituting C1 and C2, and evaluating at x = 0 gives

Az = Q(0) = q0a, MA = M(0) = −1

2
q0a

2.

(B) Integration yields:

Q(x) = −q0
x2

2a
+ C1, M(x) = −q0

x3

6a
+ C1x+ C2.

Application of boundary conditions Q(a) = 0 andM(a) = 0 gives

C1 =
1

2
q0a, C2 = −1

3
q0a

2.

Substituting C1 and C2, and evaluating at x = 0 gives

Az = Q(0) =
1

2
q0a, MA = M(0) = −1

3
q0a

2.

(C) Integration yields:

Q(x) = −q0

(
x− x2

2a

)
+ C1, M(x) = −q0

(
x2

2
− x3

6a

)
+ C1x+ C2.

Application of boundary conditions Q(a) = 0 andM(a) = 0 gives

C1 =
1

2
q0a, C2 = −1

6
q0a

2.

Substituting C1 and C2, and evaluating at x = 0 gives

Az = Q(0) =
1

2
q0a, MA = M(0) = −1

6
q0a

2.

(D) Integration yields:

Q(x) = −q0

(
x2

2a
− x3

3a2

)
+ C1, M(x) = −q0

(
x3

6a
− x4

12a2

)
+ C1x+ C2.

Application of boundary conditions Q(a) = 0 andM(a) = 0 gives

C1 =
1

6
q0a, C2 = − 1

12
q0a

2.

Substituting C1 and C2, and evaluating at x = 0 gives

Az = Q(0) =
1

6
q0a, MA = M(0) = − 1

12
q0a

2.
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(b) Equivalent point force
Let Rq be the equivalent point force. It points in positive z-direction and its magnitude is

∫ a

0
q(x)dx, i.e. the

integral which we evaluated previously. The distance xq fromA can be computed by requiring that the resultant
moment Rqxq is balanced by MA. This yields four cases,

(A) Rq = q0a xq = 1
2a

(B) Rq = 1
2q0a xq = 2

3a

(C) Rq = 1
2q0a xq = 1

3a

(D) Rq = 1
6q0a xq = 1

2a

Note that xq is the x-coordinate of the centroid of the line load.
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Question 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A beam of length a is mounted on the wall at an angle of 45◦. A constant line load q0 is applied. Calculate the reaction
forces and the bending moment about the y-axis at point A!

Solution: To find the resultant of the line load, we need to integrate along the length of the beam. For this purpose,
we introduce a coordinate system whose x′-axis is aligned with the beam axis and split the line load into parallel
and perpendicular components qN (x′) and qQ(x

′), respectively. Considering the angle, we obtain

qN (x′) = q(x′) cos(45◦) = q(x′)/
√
2 = q0/

√
2,

qQ(x
′) = q(x′) sin(45◦) = q0/

√
2.

The resultant forces are

RN =

∫ a

0

qN (x′)dx′ = q0a/
√
2, RQ =

∫ a

0

qQ(x
′)dx′ = q0a/

√
2.

The magnitude of the resultant of q(x′) is therefore Rq =
√
R2

N +R2
Q = q0a. It points along the z-direction of our

original coordinate system. The center of mass of the line load lies halfway along the beam in x′-direction, i.e. at
x = a/(2

√
2). Therefore, we can replace the line load by a resultant R acting at this point. Requiring equilibrium

yields:

→ Ax = 0

↓ −Az +R = 0 =⇒ Az = q0a

A −MA −R
a

2
√
2
= 0 =⇒ MA = − 1

2
√
2
q0a

2
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Question 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Recall that we discussed the Dirac Delta function δ(x). Evaluate the following definite integrals!

(a)
∫ 10

−10

(
x2 − 2x+ 1

)
δ(x− 2)dx

(b)
∫ +∞

−∞

(
x2 − 2x+ 1

)
δ(x+ 10)dx

(c)
∫ +∞

−∞
(f(x)− f(x0)) δ(x− x0)dx

Solution:

(a)
∫ 10

−10

(
x2 − 2x+ 1

)
δ(x− 2)dx = 22 − 2 · 2 + 1 = 1

(b)
∫ +∞

−∞

(
x2 − 2x+ 1

)
δ(x+ 10)dx = (−10)2 + 20 + 1 = 121

(c)
∫ +∞

−∞
(f(x)− f(x0)) δ(x− x0)dx = f(x0)− f(x0) = 0

Question 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A beam of length a is mounted on the wall. A force of magnitude F is applied in positive z-direction in the middle of
the beam. Calculate the internal forces and moments using integration!

Solution: The point force can be described by the function Fδ(x− a
2 ), where δ is Dirac’s Delta function. Let Q(x)

be the transversal force, then

dQ(x)

dx
= −Fδ

(
x− a

2

)
.

Integration yields ∫
dQ(x)

dx
dx = Q(x) = −FH

(
x− a

2

)
+ C1,∫

Q(x)dx = M(x) = −F
(
x− a

2

)
H

(
x− a

2

)
+ C1x+ C2,

where M(x) is the internal moment about the y-direction and H(. . . ) is the Heaviside step function. The beam is
free at the right end. Therefore, the boundary conditions are Q(a) = 0 andM(a) = 0. The first condition means

−FH
(a
2

)
+ C1 = 0 =⇒ C1 = F,

since H(a/2) = 1 for a > 0. Using this result for C1 in the condition M(a) = 0, we can write

F
(
a− a

2

)
+ Fa+ C2 = 0 =⇒ C2 = −F

a

2
,
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thus

Q(x) = F
[
−H

(
x− a

2

)
+ 1

]
,

M(x) = F
[
−
(
x− a

2

)
H

(
x− a

2

)
+ x− a

2

]
.

You can verify the solution by computing Q(x) and M(x) from the reaction forces:


