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Exercise 5: Bending
22.11.2024 - 25.11.2024

Question 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Determine if the following structures are statically determinate! Calculate the deflection and the reaction forces and

moments at the supports! Sketch the shear force, moment and deflection.

Solution: Recall that a structure is statically determinate if

3n− (r + v) = 0,

where n is the number of bodies, r the number of reaction forces or moments of the supports, and v the number of

forces or moments transmitted at links.

(a) n = 1, r = 4, v = 0 → indeterminate / overconstrained

(b) n = 1, r = 3, v = 0 → determinate

(c) n = 1, r = 3, v = 0 → determinate

In order to calculate the z-deflection w(x) of the beam we have to integrate the Euler-Bernoulli equation. However,

there are two possible starting points. Either we integrate EIw′′′′(x) four times, or we first determine the bending

moment as a function of position (M(x)) and then integrate EIw′′(x) = −M(x) two times. In both cases we need

to make use of the boundary conditions in order to determine the constants of integration. However, in the second

case, there will be fewer constants of integration.

Since problem (a) is indeterminate we cannot immediately calculateM(x) and therefore need to follow the first

approach. Note that problems (a) and (b) have the same geometry, load and boundary condition on the right hand

side. Hence, (b) can be solved quickly by recycling the solution of (a).
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(a)

EIw′′′′(x) = q0
x

l

EIw′′′(x) =
1

2
q0

x2

l
+ C1

EIw′′(x) =
1

6
q0

x3

l
+ C1x+ C2

EIw′(x) =
1

24
q0

x4

l
+

1

2
C1x

2 + C2x+ C3

EIw(x) =
1

120
q0

x5

l
+

1

6
C1x

3 +
1

2
C2x

2 + C3x+ C4

Now we apply boundary conditions:

w(x = 0) = 0 =⇒ C4 = 0,

w′(x = 0) = 0 =⇒ C3 = 0,

w′′(x = l) = 0 (zero moment)

w(x = l) = 0

}
=⇒ C1 = − 9

40
q0l, C2 =

7

120
q0l

2.

The solution for the displacements can thus be written as

w(x) =
1

EI

(
1

120
q0

x5

l
− 3

80
q0lx

3 +
7

240
q0l

3x

)
.

The reaction forces and moments can be obtained by evaluating the appropriate derivatives of w(x) at the location
of the bearings. To get the correct sign, draw the reaction forces and moments with an arbitrary sense. Then imagine

a cut and require that the bearing force/moment and the reaction force/moment sum to zero.

Az = Q(x = 0) = −EIw′′′(x = 0) = −C1 =
9

40
q0l,

Bz = −Q(x = l) = EIw′′′(x = l) =
11

40
q0l,

MA = −M(x = 0) = EIw′′(x = 0) = C2 =
7

120
q0l

2,

Ax = 0 (equilibrium)

We could check the solution for Az , Bz and MA by checking equilibrium of the whole structure.

(b) The line load is the same in (a), therefore the leading term of w(x) is q0x
5/120l, as before. The boundary

conditions are

w(x = 0) = 0 =⇒ C4 = 0, w′′(x = 0) = 0 =⇒ C2 = 0, w′′(x = l) = 0 (zero moment) =⇒ C1 = −1

6
q0l

w(x = l) = 0 =⇒ C3 =
7

360
q0l

3,

hence the solution for the displacements is

w(x) =
1

EI

(
1

120
q0

x5

l
− 1

36
q0lx

3 +
7

360
q0l

3x

)
.

The reactions forces are

Az = Q(x = 0) = −EIw′′′(x = 0) = −C1 =
1

6
q0l,

Bz = −Q(x = l) = EIw′′′(x = l) =
1

3
q0l.
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The same solution should be obtained by consideration of equilibrium of the whole structure.

(c) The problem is statically determinate, hence the reactions at the support can be obtained by requiring equilibrium

of the whole structure,

Ax = 0,

Az = F,

MA = Fa.

We divide the structure into two sectors, 0 ≤ x ≤ a (sector 1) and a ≤ x ≤ l (sector 2). The internal moment is

M (1)(x) = F (x− a) ,

M (2)(x) = 0.

The deflection is obtained by integrating the second derivative of w′′(x).

EIw(1)′′(x) = F (x− a) ,

EIw(1)′(x) = −1

2
Fx2 + Fax+ C1,

EIw(1)(x) = −1

6
Fx3 +

1

2
Fax2 + C1x+ C2,

EIw(2)′′(x) = 0,

EIw(2)′(x) = C3,

EIw(2)(x) = C3x+ C4.

Consideration of the boundary conditions gives the solution for the constants of integration,

w(1)′(x = 0) = 0 =⇒ C1 = 0,

w(1)(x = 0) = 0 =⇒ C2 = 0,

w(1)′(x = a) = w(2)′(x = a) =⇒ C3 =
1

2
Fa2,

w(1)(x = a) = w(2)(x = a) =⇒ C4 = −1

6
Fa3.

The solution for the deflection is therefore

w(1)(x) =
1

EI

[
−1

6
Fx3 +

1

2
Fax2

]
,

w(2)(x) =
1

EI

[
1

2
Fa2x− 1

6
Fa3

]
.

Question 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A beam with cylindrical cross-section (radius r) is supported by two bearings, see below. A moment M is applied at

one end. The area moment of inertia for this cross-section is I = πr4/4. Calculate the maximum deflection! Where

does it occur? Sketch the shear force, moment and deflection.
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ℓ

A

x

z

y

z
M

2r

B

Solution: Reference:Gross, Hauger, Schröder, Wall, Technische Mechanik 2, 9th edition, Springer Vieweg (pages

122–123).

Recall that a structure is statically determinate if

3n− (r + v) = 0,

where n is the number of bodies, r the number of reaction forces or moments of the supports, and v the number of

forces or moments transmitted at links. Here n = 1, r = 3, v = 0 → the structure is statically determinate.

From equilibrium, we have Ax = 0 and Az = −B = −M/l. The internal moment is

M(x) = −xAz = M
x

l
.

Let E be Young’s modulus and Iy the second moment of area for bending about y. Integration of the differential

equation of the bending line yields

EIyw
′′ = −M

l
x

EIyw
′ = −M

2l
x2 + C1

EIyw = −M

6l
x3 + C1x+ C2

The boundary conditions are w(0) = 0 and w(l) = 0. Inserting into the last equation gives C2 = 0 and C1 = Ml
6 .

Thus, we have

w(x) =
1

EIy

(
−M

6l
x3 +

Ml

6
x

)
.

The maximum value of w occurs at the position x∗
where w′(x∗) = 0, i.e.

−M

2l
(x∗)2 +

Ml

6
= 0 → x∗ =

1√
3
l.

Thus

w(x∗) =

√
3Ml2

27EIy
.

For the circular cross-section, we have from exercise 1(b) Iy = π
4 r

4
. Inserting gives

w(x∗) =
4
√
3Ml2

27πEr4
.



Micromechanics (Prof. Dr. Edoardo Milana, Prof. Dr. Lars Pastewka) exercise sheet 5 Winter term 2024/25

Question 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The beam shown below has the bending stiffness EI and is subjected to a line load q0. Calculate the reaction forces

and the deflection of the beam! Sketch the shear force, moment and deflection.

q0

x

z

A
B C

ℓ ℓ

EI

Hint: If a system is hyperstatic it might be helpful to start from the Euler-Bernoulli equation before trying to determine

the reaction forces.

Solution: This structure is composed of one element (r = 1) and four bearings, which create five reactions (r = 5).
Testing for determinacy, we find

3n− (r + v) = −2, (1)

i.e. the structure is hyperstatic. We cannot find all reactions by consideration of equilibrium alone. Thus, we will

first solve the Euler-Bernoulli equation and then obtain the reactions from the solution.

There is a discontinuity at the support B, hence we need to find separate solutions for the two sectors 0 ≤ x ≤ ℓ
(sector 1) and ℓ ≤ x ≤ 2ℓ (sector 2). Let w(1)(x) be the deflection along z in sector 1. There is no line load, hence

EIw(1)′′′′(x) = 0, (2)

EIw(1)′′′(x) = C
(1)
1 , (3)

EIw(1)′′(x) = C
(1)
1 x+ C

(1)
2 , (4)

EIw(1)′(x) =
1

2
C

(1)
1 x2 + C

(1)
2 x+ C

(1)
3 , (5)

EIw(1)(x) =
1

6
C

(1)
1 x3 +

1

2
C

(1)
2 x2 + C

(1)
3 x+ C

(1)
4 , (6)

where C
(1)
1 , C

(1)
2 , C

(1)
3 , and C

(1)
4 are constants of integration.

In sector 2, the line load is q0, therefore

EIw(2)′′′′(x) = q0, (7)

EIw(2)′′′(x) = q0x+ C
(2)
1 , (8)

EIw(2)′′(x) =
1

2
q0x

2 + C
(2)
1 x+ C

(2)
2 , (9)

EIw(2)′(x) =
1

6
q0x

3 +
1

2
C

(2)
1 x2 + C

(2)
2 x+ C

(2)
3 , (10)

EIw(2)(x) =
1

24
q0x

4 +
1

6
C

(2)
1 x3 +

1

2
C

(2)
2 x2 + C

(2)
3 x+ C

(2)
4 , (11)

where C
(2)
1 , C

(2)
2 , C

(2)
3 , and C

(2)
4 are constants of integration.
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The following boundary conditions apply:

w(1)(x = 0) = 0 (beam is clamped),

w(1)(x = 0)
′
= 0 (beam is clamped),

w(1)(x = l) = w(2)(x = l) = 0, (support at B),

w(1)′(x = l) = w(2)′(x = l), (no kink at B),

w(1)′′(x = l) = w(2)′′(x = l), (moment continuous at B),

w(2)(x = 2l) = 0 (support at C).

w(2)′′(x = 2l) = 0 (no moment at support C).

(12)

By using the first two boundary conditions, we find C
(1)
4 = C

(1)
3 = 0. Inserting the third boundary condition in Eq.

6, we get

C
(1)
2 = −1

3
C

(1)
1 l. (13)

w(2)(x = l) = 0 and w(2)(x = 2l) = 0 imply

C
(2)
4 = −

(
1

24
q0l

4 +
1

6
C

(2)
1 l3 +

1

2
C

(2)
2 l2 + C

(2)
3 l

)
, (14)

C
(2)
4 = −

(
2

3
q0l

4 +
4

3
C

(2)
1 + 2C

(2)
2 l2 + 2C

(2)
3 l

)
, (15)

which can be combined to give

C
(2)
3 = −

(
5

8
q0l

3 +
7

6
C

(2)
1 l2 +

3

2
C

(2)
2 l

)
, (16)

C
(2)
4 =

7

12
q0l

4 + C
(2)
1 l3 + C

(2)
2 l2. (17)

w(2)′′(x = 2l) = 0 yields

C
(2)
2 = −2q0l

2 − 2C
(2)
1 l.

The only remaining unknowns are now C
(1)
1 and C

(2)
1 . Thus far, we have

EIw(1)(x) =
1

6
C

(1)
1

(
x3 − lx2

)
,

EIw(2)(x) = − 1

24
q0x

4 +
1

6
C

(2)
1 x3 −

(
q0l + C

(2)
1

)
lx2 +

19

8
q0l

3x+
11

6
C

(2)
1 l2x− 17

12
q0l

4 − C
(2)
1 l3.

Finally, the conditions w(1)′(x = l) = w(2)′(x = l) and w(1)′′(x = l) = w(2)′′(x = l) at B yield

C
(1)
1 =

3

28
q0l,

C
(2)
1 = −11

7
q0l.
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The deflections are therefore

w(1)(x) =
1

EI

[
1

56
q0l

(
x3 − lx2

)]
,

w(2)(x) =
1

EI

[
− 1

24
q0x

4 − 11

42
q0lx

3 +
4

7
q0l

2x2 +
19

8
q0l

3x− 121

42
q0l

3x− 17

12
q0l

4 +
11

7
q0l

4

]
.

The reaction forces can be obtained from the derivatives of the deflections,

Az = −EIw(1)′′′(x = 0) = − 3

28
q0l,

MA = −EIw(1)′′(x = 0) =
1

28
q0l

2,

−Cz = −EIw(2)′′′(x = 2l) → Cz =
3

7
q0l.

Ax = 0 and Bz = 19
28q0l follow from equilibrium.

A final note: dividing the structure into different sectors and finding separate solutions, as was done here, can be a

bit tedious. A shorter and more elegant solution is possible using Macaulay brackets (Föppel brackets), see Hauger,

Lippmann, Mannl, Werner, Aufgaben zur Technischen Mechanik 1–3, 3d ed. Springer (p. 224–225).


