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Exercise 8: Hooke’s law
13.12.2024 - 16.12.2024

Question 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reference: Chou, Pagano, Elasticity: Tensor, Dyadic, and Engineering Approaches, Dover Publications, p. 64.
Determine the slope of the σxx vs. εxx curve in the elastic range if a material is tested under the following state of
stress:

σxx = 2σyy = 3σzz

σxy = σxz = σyz = 0

Solution: Recall Hooke’s law:

σxx = 2µεxx + λ (εxx + εyy + εzz) ,

σyy = 2µεyy + λ (εxx + εyy + εzz) ,

σzz = 2µεzz + λ (εxx + εyy + εzz) ,

σxy = 2µεxy,

σxz = 2µεxz,

σyz = 2µεyz.

We see immediately that εxy = εxz = εyz = 0. The first equation gives

λ (εxx + εyy + εzz) = σxx − 2µεxx.

Replacing this term in the second and third equations allows to determine εyy and εzz as function of σxx and εxx,

εyy = εxx − σxx

4µ
,

εzz = εxx − σxx

3µ
.

Inserting back into the first equation allows to eliminate εyy and εzz . Thus, we can write σxx as a function of εxx
alone,

σxx =
12µ (3λ+ 2µ)

(12µ+ 7λ)
εxx

and read off the slope

∂σxx

∂εxx
=

12µ (3λ+ 2µ)

(12µ+ 7λ)
.

Question 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reference: Chou, Pagano, Elasticity: Tensor, Dyadic, and Engineering Approaches, Dover Publications, p. 86.
A bar of constant mass density ρ hangs under its own weight and is supported by the uniform stress σ0 as shown in
the figure. Assume that the stresses σxx, σyy , σxy , σxz , and σyz vanish identically.

(a) Recall that there are 15 governing equations in 3D: three equilibrium equations, six strain-displacement relations,
and six stress-strain relations. Show that the 15 equations reduce to seven equations under the assumptions
above. What are the variables?

(b) Integrate the equilibrium equation to show that σzz = ρgz, where g is the acceleration due to gravity. Also
show that the prescribed boundary conditions are satisfied by this solution.
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(c) Find εxx, εyy , and εzz from Hooke’s law.

l

σ0=ρgl

z
x

y

x

Solution: (a) The governing equation for isotropic elasticity in 3D are

σxx = 2µεxx + λ (εxx + εyy + εzz)

σyy = 2µεyy + λ (εxx + εyy + εzz)

σzz = 2µεzz + λ (εxx + εyy + εzz)

σxy = 2µεxy

σxz = 2µεxz

σyz = 2µεyz


Hooke’s law,

εxx =
∂ux

∂x

εyy =
∂uy

∂y

εyy =
∂uy

∂y

εxy =
1

2

(
∂ux

∂y
+

∂uy

∂x

)
εxz =

1

2

(
∂ux

∂z
+

∂uz

∂x

)
εyz =

1

2

(
∂uy

∂z
+

∂uz

∂y

)



strain-displacement relations,

∂σxx

∂x
+

∂σxy

∂y
+

∂σxz

∂z
+ Fx = 0

∂σxz

∂x
+

∂σyy

∂y
+

∂σyz

∂z
+ Fy = 0

∂σxz

∂x
+

∂σyz

∂y
+

∂σzz

∂z
+ Fz = 0


equilibrium

Equations colored red disappear. If σxy = σxz = σyz = 0 and µ ̸= 0, then the three red equations in Hooke’s law
can only be fulfilled if εxy = εxz = εyz = 0. All three become 0 = 0 and can therefore be ignored. The left hand
side of the three red strain-displacement relations is zero. They can only be fulfilled if (i) the derivatives on the
right hand side are zero, or (ii) if ∂ux/∂y = −∂uy/∂x, ∂ux/∂z = −∂uz/∂x, and ∂uy/∂z = −∂uz/∂y. Case (ii) represents
a state of superimposed rigid body rotation, which we can ignore. Two equilibrium equations disappear because
the corresponding stresses are zero. Note that gravitation acts only along z, hence Fx = Fy = 0. The remaining
variables are σzz , ux, uy , uz , εxx, εyy , and εzz . Note that there are now seven governing equations and seven
variables.
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Solution: (b) The gravitation force per volume is Fz = −ρg. The remaining equilibrium equation reads

∂σzz

∂z
− ρg = 0,

which can be integrated to give

σzz = ρgz + C.

C is a constant. σzz must vanish at z = 0, hence C = 0.

Solution: (c) Hooke’s law now reads

0 = 2µεxx + λ (εxx + εyy + εzz) ,

0 = 2µεyy + λ (εxx + εyy + εzz) ,

σzz = 2µεzz + λ (εxx + εyy + εzz) .

By subtracting the first and the second equation, we find εxx = εyy . Setting εxx = εyy = εlateral and inserting back
into the first or second equation, we then obtain

εlateral = − λ

2 (λ+ µ)
εzz.

Note that λ
2(λ+µ) ≡ ν, the Poisson constant. Inserting εlateral and the result for σzz from (b) into the last equation,

we get

εxx =

(
2µ+ λ− λ2

λ+ µ

)−1

ρgz.

Question 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Metal or semiconductor crystals may contain defects in their lattice structure called “dislocations”. These are very
important for understanding plastic deformation. A so-called “screw dislocation”, sketched in the figure, is created by
the following displacement

u(x, y, z) =

 0
0

b
2π arctan

(
y
x

)
 .

Figure 1: screw dislocation from:
https://www.tf.
uni-kiel.de/matwis/
amat/defen/kap5/
backbone/r522.html

Calculate the associated strain tensor ε and the stress tensor σ (using Hooke’s law)! Is the body in a state of plane
strain or plane stress? Do you notice something peculiar near the center of the dislocation at x = y = 0?

Solution: The strains are given by the equation

εij =
1

2
(∂iuj + ∂jui)

https://www.tf.uni-kiel.de/matwis/amat/def_en/kap_5/backbone/r5_2_2.html
https://www.tf.uni-kiel.de/matwis/amat/def_en/kap_5/backbone/r5_2_2.html
https://www.tf.uni-kiel.de/matwis/amat/def_en/kap_5/backbone/r5_2_2.html
https://www.tf.uni-kiel.de/matwis/amat/def_en/kap_5/backbone/r5_2_2.html
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we thus find

εxx = εyy = εzz = εxy = εyx = 0,

εxz = εzx = − b

4π

y

x2 + y2
,

εyz = εzy =
b

4π

x

x2 + y2
,

and the stresses can be computed by the formula for isotropic materials given in the lecture

σij = λδijεkk + 2µεij

to find

σxx = σyy = σzz = σxy = σyx = 0,

σxz = σzx = −µb

2π

y

x2 + y2
,

σyz = σzy =
µb

2π

x

x2 + y2
.

The state of deformation is neither plane strain nor plane stress. Note that the fields diverge as x, y → 0. Thus small
strain elasticity breaks down in some region around x = y = 0 and one needs to consider the atomic structure of
the material to find the true state of deformation.

Question 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We now consider a state of plane strain. The governing equations are

εxx =
∂ux

∂x
, εyy =

∂uy

∂y
, εxy =

1

2

(
∂ux

∂y
+

∂uy

∂x

)
(definition of strain),

σxx = 2µεxx + λ (εxx + εyy) , σyy = 2µεyy + λ (εxx + εyy) , σxy = 2µεxy (Hooke’s law),
∂σxx

∂x
+

∂σxy

∂y
+ Fx = 0,

∂σyy

∂y
+

∂σxy

∂x
+ Fy = 0, (equilibrium).

These are eight governing equations. However, we can combine them in such a way that we end up with only
two equations in terms of the displacement components ux and uy . This form is convenient for problems where
displacement components are prescribed over the entire boundary of the body. Find these two equations!

Solution: By subsituting the strains into Hooke’s law, one obtains

σxx = λ

(
∂ux

∂x
+

∂uy

∂y

)
+ 2µ

∂ux

∂x
,

σyy = λ

(
∂ux

∂x
+

∂uy

∂y

)
+ 2µ

∂uy

∂y
,

σxy = µ

(
∂uy

∂x
+

∂ux

∂y

)
.

Inserting these equations into the equilibrium conditions and eliminating stresses gives

µ

(
∂2ux

∂x2
+

∂2ux

∂y2

)
+ (λ+ µ)

∂

∂x

(
∂ux

∂x
+

∂uy

∂y

)
+ Fx = 0,

µ

(
∂2uy

∂x2
+

∂2uy

∂y2

)
+ (λ+ µ)

∂

∂y

(
∂ux

∂x
+

∂uy

∂y

)
+ Fy = 0.

These are the Navier-Cauchy equations for plane strain.


