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Exercise 10: Stress tensor
17.01.2025 - 20.01.2025

Question 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this exercise, we will practice tensor rotation. Consider the two

coordinate systems in the figure on the right. The red coordinate system

(“specimen frame”) has been rotated. The basis vectors of this system

with respect to the laboratory frame are

x′ =
1√
2

 1
−1
0

 , y′ =
1√
6

 1
1
−2

 , z′ =
1√
3

11
1

 .

Suppose we are given the representation of a stress tensor in the specimen frame,

σ′ =

0 0 0
0 0 0
0 0 σzz

 .

This stress tensor would be created by a force that acts on the plane whose normal is z′, along the z′-direction. We

want the representation σ of this stress tensor in the laboratory frame.

(a) Find the rotation matrix R which, given the representation of a vector in the laboratory frame, yields the

representation in the specimen frame upon matrix-vector multiplication!

(b) Verify that the determinant ofR is equal to 1!

(c) Perfom tensor rotation to obtain σ!

(d) Calculate the von Mises stress for σ′
and σ!

Solution:
(a)

The task is to find the rotation matrixR which rotates a vector from the laboratory frame (L) into the specimen

frame (S), given the axes (x′,y′, z′) of the specimen frame coordinate system. We make this clear by calling this

rotation RL→S . To find the rotation RL→S we will first derive the rotation matrix RcL→cS for the axes of the

coordinate systems. SoRcL→cS rotates the coordinate system of the laboratory frame into the coordinate system of

the specimen frame, i.e.

RcL→cS · x = x′ , RcL→cS · y = y′ , RcL→cS · z = z′

We already know the axes of both systems and find the rotation matrix as follows,

RcL→cS · x =

rc,xx rc,xy rc,xz
rc,yx rc,yy rc,yz
rc,zx rc,zy rc,zz

 ·

1
0
0

 =

rc,xx
rc,yx
rc,zx

 !
= x′ =

1√
2

 1
−1
0


By analogous computations for y and z we find

RcL→cS = (x,y, z) =


1√
2

1√
6

1√
3

− 1√
2

1√
6

1√
3

0 − 2√
6

1√
3


However this is the rotation matrix for the coordinate systems. To find the rotation matrix for a vector remember

the following.
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As shown in the above sketch it does not matter whether you rotate the vector or the coordinate system, you will

find the same coefficients for v′x and v′y . However, the rotation indicated by the red arrow is in the opposite direction.

Thus the rotation for a vector is the inverse of the rotation for the coordinate system. Using also the unitarity

(R−1 = RT ) of rotation matrices we find

RL→S = R−1
cL→cS = RT

cL→cS =


1√
2

− 1√
2

0

1√
6

1√
6

− 2√
6

1√
3

1√
3

1√
3


(b)

Recall that

det(R) =

∣∣∣∣∣∣
R11 R12 R13

R21 R22 R23

R31 R32 R33

∣∣∣∣∣∣
= (R11R22R33 +R12R23R31 +R13R21R32)− (R31R22R13 +R32R23R11 +R33R21R12) .

ForRL→S you thus find det (RL→S) = 1.

(c)

To keep it shorter we use here R for the rotation RL→S . In dyadic notation the rotation of the second order tensor

σ′
can be found as explained in the lecture. We want to rotate the stress tensor from the specimen frame into the

laboratory frame. By analysing the rotation behaviour of vectors we can figure out how one has to rotate a second

order tensor. From (a) we know

R · v = v′

⇔ RT ·R · v = RT · v′

⇔ v = RTv′

For a second order tensorA′
and a vectors v′

and b′
in the specimen frame we find

A′ · v′ = b′

⇔ RT · (A′ · v′) = RT · b′

⇔ RT · (A′ ·R ·RT︸ ︷︷ ︸
=1

·v′) = RT · b′︸ ︷︷ ︸
=b

⇔ RT ·A′ ·R︸ ︷︷ ︸
=A

·RT · v′︸ ︷︷ ︸
=v

= b
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So we have found:

σ = RT · σ′ ·R

In Einstein sum notation one can write:

σmn = Rimσ′
ijRjn.

Note that only σ33 = σzz is nonzero. Therefore, we need to consider only one term for eachmn, namely

σmn = R3mR3nσ
′
33 = R3mR3nσzz.

Furthermore, keep in mind that the rotated stress tensor must be symmetric. Hence

σ11 = R2
31σzz =

1

3
σzz,

σ22 = R2
32σzz =

1

3
σzz,

σ33 = R2
33σzz =

1

3
σzz,

σ13 = σ31 = R31R33σzz =
1

3
σzz,

σ23 = σ32 = R32R33σzz =
1

3
σzz,

σ12 = σ12 = R31R32σzz =
1

3
σzz.

An in matrix form

σ =
1

3
σzz

1 1 1
1 1 1
1 1 1

 .

(d)

Recall the definition of the von Mises stress in terms of the components of the stress tensor σij , or in terms of the

deviatoric stress sij = σij − 1
3σkkδij

σvM =

√
3

2
sijsij =

√
1

2

[
(σ11 − σ22)

2
+ (σ22 − σ33)

2
+ (σ33 − σ11)

2
]
+ 3 (σ2

12 + σ2
23 + σ2

31).

For σ′
we have

σ′
vM =

√
1

2
[σ2

33 + σ2
33] = σzz.

And for σ

σvM =
√

3 (σ2
12 + σ2

23 + σ2
31) = σzz.

As expected, the two take the same value. The von Mises stress is an invariant of the stress tensor.

Question 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Analyse the plane stress

σ =

(
3

√
3
2√

3
2 2

)
(a) Find the rotation angle ϕσ,max at which the diagonal stress entries are maximal.

(b) Which values take the principal or main stresses σ1 and σ2?

(c) Find the rotation angle ϕτ,max at which the shear stress is maximal and compute the value for the maximal shear

stress τmax.

(d) In the lecture it was shown that not only the principal stresses can characterize a stress state but also the stress

invariants. Compute the stress invariants I1 and I2.

(e) The dimension of a stress as well as the dimension of the principal stresses is force per area. What are the

dimensions of the two stress invariants I1 and I2.

Solution:

(a) In the lecture we have derived the formula

tan(2ϕσ,max) =
2τxy

σxx − σyy

By plugging in the numbers and equating out we find

ϕσ,max =
arctan(

√
3)

2
=

π

6
= 30◦

(b) Method 1: use the formulas

σ1/2 =
σxx + σyy

2
±

√(
σyy − σyy

2

)2

+ τ2xy =
5

2
± 1 =

{
σ1 = 7

2

σ2 = 3
2

Method 2: rotate the stress by the angle ϕσ,max = 30◦

R =

(
cos(α) − sin(α)
sin(α) cos(α)

)
α=ϕσ,max

=

(√
3
2 − 1

2
1
2

√
3
2

)

σ′ = RT · σ ·R =

(
7
2 0
0 3

2

)
(c) We use again the formula from the lecture

− tan(2ϕτ,max) =
σxx − σyy

2τxy
⇒ ϕτ,max = −

arctan( 1√
3
)

2
= − π

12
= −15◦ =

{
−15◦

−15◦ + 90◦

As in part (b) we can either use the formula

τmax = ±

√(
σxx − σyy

2

)2

+ τ2xy = ±σ1 − σ2

2
= ±1
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or rotate the matrix by the angle ϕτ,max =

{
15◦

75◦

R−15◦ =

( √
3+1

2
√
2

√
3−1
2
√
2

−
√
3−1
2
√
2

√
3+1

2
√
2

)
R75◦ =

(√
3−1
2
√
2

−
√
3+1

2
√
2√

3+1
2
√
2

√
3−1
2
√
2

)

σ′ = RT
−15◦ · σ ·R−15◦ =

(
5
2 1
1 5

2

)
σ′ = RT

75◦ · σ ·R75◦ =

(
5
2 −1
−1 5

2

)
(d) Method 1: The stress invariants Ii are the negative coefficients of the characteristic polynomial

det (σ − λ1) = λ2 − 5λ+
21

4
⇒ I1 = 5 , I2 = −21

4

Method 2: By the formulas derived in the lecture

I1 = tr(σ) = 5

I2 = −σxxσyy + τ2xy = −σ1σ2 = −det(σ) = −21

4

(e) I1 is the trace of the stress and thus has the same dimension as the stress (force/area). I2 is the product of
the two main stresses and thus hast the dimension (force/area)2.

Question 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The following stress tensor characterises a special stress state

σ =

(√
2

√
2√

2 −
√
2

)
(a) Compute the angle ϕσ,max at which the normal stresses takes its maximal value.

(b) Use the general rotation matrix and the computed angle ϕσ,max to rotate the stress state in the coordinate system

of maximal normal stress. What are the values for the principal stresses?

(c) What is the special name for the stress state found in (b)?

(d) Find the representation of the stress where the shear stress becomes maximal.

Solution:

(a) As in Q1 (a) we use the formula derived in the lecture and find

ϕσ,max =
arctan(1)

2
=

π

8
= 22.5◦

(b) Now we are explicitly asked to rotate the stress into the coordinate system of maximal normal stresses.

R22.5◦ =

(
cos(α) − sin(α)
sin(α) cos(α)

)
α=ϕσ,max

=

√
2+

√
2

2 −
√

2−
√
2

2√
2−

√
2

2

√
2+

√
2

2


σσ,max = RT

22.5◦ · σ ·R22.5◦ =

(
2 0
0 −2

)
We find the two principal stresses σ1 = 2, σ2 = −2.
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(c) The two principal stresses are the negative of each other. This stress state is called pure shear stress. By
transforming into the coordinate system of maximal shear stress in part (d) we will see more clearly why this

state is called pure shear.

(d) In the lecture we have shown that a rotation by 45◦ or 135◦ rotates a stress state from maximal normal

stresses to maximal shear stresses. The two rotation matrices are given by

R45◦ =

(
1√
2

− 1√
2

1√
2

1√
2

)
R135◦ =

(
− 1√

2
− 1√

2
1√
2

− 1√
2

)

You can use one of them to find the stress state in the coordinate system where the shear stress is maximal

στ,max = RT
45◦ · σσ,max

·R45◦ =

(
0 −2
−2 0

)
στ,max = RT

135◦ · σσ,max ·R135◦ =

(
0 2
2 0

)

Question 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Now we have a more general three dimensional stress state given by

σ =

1 2 3
2 4 2
3 2 1


(a) Compute the three principal stresses which are the eigenvalues of the stress tensor.

(b) What are the values of the three invariants I1, I2 and I3 of the given stress state?

(c) Compute the hydrostatic stress σh.

(d) Compute the deviatoric stress sij which is also called stress deviator.

(e) Which values take the invariants J1, J2 and J3 of the stress deviator.

(f) What is the value of the von Mises stress?

(g) What is special about J2 and why is the von Mises stress derived from J2?

Solution:

(a) Compute the eigenvalues from the characteristic polynomial

det (σ − λ1) = −λ3 + 6λ2 + 8λ− 16
!
= 0

Either you use a computer or you can solve this equation also by hand. You can guess the solution λ1 = −2
and use polynomial long division to find the other two roots.

(−λ3 + 6λ2 + 8λ− 16) : (λ+ 2) = −λ2 + 8λ− 8

−λ2 + 8λ− 8
!
= 0 ⇒ λ2/3 = 2(2∓

√
2)

So we find:

σ1 = −2 , σ2 = 2(2−
√
2) , σ3 = 2(2 +

√
2)
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(b) The three invariants I1, I2 and I3 can be computed by the formulas given in the lecture or more easy can be

directly read from the coefficients of the characteristic polynomial.

0 = −λ3 +6︸︷︷︸
=I1

λ2 +8︸︷︷︸
=I2

λ−16︸︷︷︸
=I3

I1 = tr(σ) = 1 + 4 + 1 = +6

I2 = σ1σ2 + σ2σ3 + σ1σ3 = −8

I3 = σ1σ2σ3 = −16

(c) The hydrostatic stress in three dimensions is given by

σh =
1

3
tr(σ) =

1

3
I1 = +2

(d) The deviatoric stress sij is a pure shear stress and given by

s = σ − σh1 =

−1 2 3
2 2 2
3 2 −1


(e) The invariants J1, J2 and J3 of the stress deviator can be either be found by constructing the characteristic

polynomial or by using the formulas from the lecture. As the trace of the deviatoric stress is zero by construction

J1 is always equal to zero.

0 = −λ3 +0︸︷︷︸
=J1

λ2 +20︸︷︷︸
=J2

λ+16︸︷︷︸
J3

J1 = 0

J2 =
1

6

(
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ1 − σ3)

2
)
= +20

J3 = det(s) = +16

(f) The von Mises stress can be computed directly from J2

σ1/2vM =
√
3J2 =

√
60 = 2

√
15

(g) The von Mises stress is a measure for a material if it undergoes plastic deformation or other failure. Typically

materials only deform plastically under shear stress. In the lecture we have derived in two dimensions that√
J2 is equal to the maximal shear stress στ,max. Thus the von Mises stress is the maximal shear stress and

therefore a direct measure to propose if a material undergoes plastic deformation under a certain stress state.


