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Exercise 11: Rotation and invariants
Jan. 27-31

QUESTION 1 .. e
We want to demonstrate for the two-dimensional case that Hooke’s law with isotropic elastic constants is indeed
isotropic. Consider a 2D stress tensor ¢ and the corresponding strain ¢,

o o € €

o= Tx Ty , e= Tx zy | (1)
ny Uyy EIZL} €yy

Next, consider the matrix for rotation by an arbitrary angle o

n_ [ cos(a) sin(a)] . @)

—sin(a) cos(a)

The most straightforward way to demonstrate isotropy would be to rotate the elastic stiffness tensor. However, this is
a fourth-order tensor and rotating it is cumbersome. Here, we take a different approach. In order to demonstrate
isotropy

1. express o in terms of the components of ¢,
2. rotate o to find the representation ¢’ of this state of stress in the new coordinate system,

3. replace the components of ¢ in ¢’ by the components of the strain tensor ¢’ in the rotated coordinate system.

You should see that the constants of proportionality between stress and strain — the elastic constants — are the same
in the new and the old coordinate system!

Solution:
1.)
045 = /\5ij5kk A 2,u€ij (3)
2pegs + A (€zz + Eyy) 2pE 5y )
2pegy 2ueyy + A (€za +£yy)

2.) Assuming that R is the matrix which, given the representation of a vector in the original coordinate system,
yields the representation in the new coordinate system, we need to perform the following operation to find o’

o' = RoRT (matrix notation), or, equivalently,

. . . ()
Opn = RmiRnjo;; (index notation).
The result is
p_ cos )2022 + sin(2a) o,y + sin(a)?oy, cos(2a) o5y — cos(a@) sin(a) (ozs — Oyy)
crxy — cos(a) sin(a) (042 — 0yy)  sin(a)?0,, — 2sin(a) cos(a)oyy, + cos(a)?oy,
= { } ,  with

(6)

e = (60a + o) (- 20+ e = ) 50 (20 + 2isin (20

= (eae +&yy) (1t + A) — (Exa — yy) pcos (2a) — 2eqypsin (2a),

= (2e4y c0s (2a) — (€30 — Eyy) sin (2a)) .

3.) To get the components of € in terms of the components of ¢/, we need to consider the reverse sense of rotation,
i.e.e = RT¢'R. The transformation rules are the same for stress and strain, therefore the result can be obtained
immediately by replacing o« — —c, 0,5 — €/, Opy — szy, and oy, — 5;?/ in the matrix above,

_ ABaD Ty Yy

cos(a)?el,,, — sin(2a)e’,, + sin(a)?e! cos(2a)el,, + cos(a) sin(a) (e},
"~ |cos(2a)el, + cos(a) sin(a) (e, —e},) sin(a)?el,, + 2sin(a) cos(a)el,
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Inserting the components of ¢ in the equations for o7, 07, , and o, , we obtain
o — [2HEs + A (s + ) 2pict, ®
- !/ / / !/ .
2/iE 5y 2ueyy + A (e5s + £4y)

We can see that the elastic constants are the same in the two coordinate systems.

QUESTION 2 . . .o e
Reference: Rosler, Harders, Biaker, Mechanisches Verhalten der Werkstoffe, 2nd ed, Teubner, p. 412

A component made from a polycrystalline Aluminum alloy has the yield strength of 200 MPa and is subjected to

plane stress with

Oy = Oyy = 155 MPa, 7., = 55 MPa. 9)

(a) Write the deviatoric stress!

(b) Calculate the principal stresses!
(c) Evaluate both Tresca’s and von Mises’ criterion to determine whether the material will yield!

Solution:
(@)
1 155 MPa 55 MPa 0 155/3 MPa 55 MPa 0
o =a— 3 Trol= | 55MPa 155MPa 0| —310/3 MPal = | 55 MPa 155/3 MPa 0
0 0 0 0 0 —310/3 MPa
(10)
(b)
o1 = 210 MPa, oo = 100 MPa, o3 = 0 MPa (11)
(c) The two criteria contradict in this case,
OTresca = 01 — 0777 = 210 MPa > 200 MPa —> the material will yield, (12)

1
OMises = \/2 [(0’] — 011)2 + (011 — 0111)2 + (o1 — 0111)2] = 181.93 MPa = the material will not yield.
(13)

Both criteria are empirical, hence no decision can be made.

OUESTION 3 ..
Reference: Cleland Foundations of Nanomechanics, Springer, p. 174.

(a) A solid is subjected to the stress given below. Find the three stress invariants and the three principal values of
stress. Solve for the directions of the three principal axes.

(14)
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(b) A solid is subjected to the stress given below. Find the expression for the stress tensor if the coordinate axes are
rotated by 60° counterclockwise about the z-axis.

2 1 0
o=1|1 0 0| Pa (15)
0 0 4

(c) A solid is stressed according to the tensor below. Show that for this form, the stress tensor is invariant under
rotations about the z-axis.

a 0 O
o=1|0 a O (16)
0 0 b
Solution:
(a) The three invariants are
I =tr(o) = 04y + 0yy + 0., =5 Pa,
Iy = 0400y + OyyO.s + 0pg0,, — Uiy — 022 — O’iz = 6 Pa, (17)

13 = det(a) = (0 Pa.

The principal stresses are the eigenvalues ; (i = 1...3) of 7, i.e. the roots of the characteristic polynomial. The
invariants reappear here as the coefficients of the polynomial,

NI +LA-I;=0. (18)

The roots are \; = 3 Pa, Ay = 2 Pa, A3 = 0 Pa. The eigenvectors e; ( = 1. .. 3) are obtained by solving for the
components of e; in the equation

oe; = )\iei. (19)

For each i, we have three equations and three unknowns (the components of e;),

1 1 0 €1g €1z 0
A1 1 1 0 €ly | = 3 €ly| — €1 = 0 s
10 0 3] [e1] ©en 11
[1 1 0] [e2] [ea, | [1]
Ag @ 1 1 0 €2y | = 2 €2y | — €2 = 1], (20)
_0 0 3_ _62z_ _622_ _O_
[1 1 0] [es:] En [—1
A3 : 1 1 0 €3y | = 0 €3y | — €3 = 1
_0 0 3_ _632_ _632_ L 0
(b) The rotation matrix that transforms from rotated to original frame is (6 = 60°)
cos(fd) —sin(d) O 1 7@ 0
R = |sin(d) cos(d) 0| = § 1 9. (21)
0 0 1 0 0 1

If we right-multiply this matrix with a column vector whose components are given in the rotated frame, then we
get the representation of this vector in the original coordinate system. The rotated stress tensor is computed as

o =RToR (matrix notation), o2
< 0;; = RriRijoy  (index notation).
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Carrying out the multiplication, we find

L@V —(1+v3) 0
o'=5|-(1+Vv3) (3-v3) 0f. (23)
0 0 8
(c) The rotation matrix has the form
cos(f) —sin(d) 0
R = [sin(f) cos(f) 0. (24)
0 0 1
Rotation of the stress tensor gives
a 0 O
o' =RT6R = |0 a 0| =0, independent of 6. (25)
0 0 b

QED.



