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Exercise 11: Rotation and invariants
Jan. 27-31

Question 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We want to demonstrate for the two-dimensional case that Hooke’s law with isotropic elastic constants is indeed
isotropic. Consider a 2D stress tensor σ and the corresponding strain ε,

σ =

[
σxx σxy

σxy σyy

]
, ε =

[
εxx εxy
εxy εyy

]
. (1)

Next, consider the matrix for rotation by an arbitrary angle α

R =

[
cos(α) sin(α)
− sin(α) cos(α)

]
. (2)

The most straightforward way to demonstrate isotropy would be to rotate the elastic stiffness tensor. However, this is
a fourth-order tensor and rotating it is cumbersome. Here, we take a different approach. In order to demonstrate
isotropy

1. express σ in terms of the components of ε,
2. rotate σ to find the representation σ′ of this state of stress in the new coordinate system,
3. replace the components of ε in σ′ by the components of the strain tensor ε′ in the rotated coordinate system.

You should see that the constants of proportionality between stress and strain — the elastic constants — are the same
in the new and the old coordinate system!

Solution:
1.)

σij = λδijεkk + 2µεij (3)

σ =

[
2µεxx + λ (εxx + εyy) 2µεxy

2µεxy 2µεyy + λ (εxx + εyy)

]
(4)

2.) Assuming that R is the matrix which, given the representation of a vector in the original coordinate system,
yields the representation in the new coordinate system, we need to perform the following operation to find σ′:

σ′ = RσRT (matrix notation), or, equivalently,
σ′
mn = RmiRnjσij (index notation).

(5)

The result is

σ′ =

[
cos(α)2σxx + sin(2α)σxy + sin(α)2σyy cos(2α)σxy − cos(α) sin(α) (σxx − σyy)
cos(2α)σxy − cos(α) sin(α) (σxx − σyy) sin(α)2σxx − 2 sin(α) cos(α)σxy + cos(α)2σyy

]
=

[
σ′
xx σ′

xy

σ′
xy σ′

yy

]
, with

σ′
xx = (εxx + εyy) (µ+ λ) + (εxx − εyy)µ cos (2α) + 2εxyµ sin (2α),

σ′
yy = (εxx + εyy) (µ+ λ)− (εxx − εyy)µ cos (2α)− 2εxyµ sin (2α),

σ′
xy = µ (2εxy cos (2α)− (εxx − εyy) sin (2α)) .

(6)

3.) To get the components of ε in terms of the components of ε′, we need to consider the reverse sense of rotation,
i.e. ε = RT ε′R. The transformation rules are the same for stress and strain, therefore the result can be obtained
immediately by replacing α → −α, σxx → ε′xx, σxy → ε′xy , and σyy → ε′yy in the matrix above,

ε =

[
cos(α)2ε′xx − sin(2α)ε′xy + sin(α)2ε′yy cos(2α)ε′xy + cos(α) sin(α)

(
ε′xx − ε′yy

)
cos(2α)ε′xy + cos(α) sin(α)

(
ε′xx − ε′yy

)
sin(α)2ε′xx + 2 sin(α) cos(α)ε′xy + cos(α)2ε′yy

]
. (7)
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Inserting the components of ε in the equations for σ′
xx, σ′

xy , and σ′
yy , we obtain

σ′ =

[
2µε′xx + λ

(
ε′xx + ε′yy

)
2µε′xy

2µε′xy 2µε′yy + λ
(
ε′xx + ε′yy

)] . (8)

We can see that the elastic constants are the same in the two coordinate systems.

Question 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reference: Rösler, Harders, Bäker, Mechanisches Verhalten der Werkstoffe, 2nd ed, Teubner, p. 412
A component made from a polycrystalline Aluminum alloy has the yield strength of 200 MPa and is subjected to
plane stress with

σxx = σyy = 155MPa, τxy = 55MPa. (9)

(a) Write the deviatoric stress!
(b) Calculate the principal stresses!
(c) Evaluate both Tresca’s and von Mises’ criterion to determine whether the material will yield!

Solution:

(a)

σ′ = σ − 1

3
Trσ1 =

155 MPa 55 MPa 0
55MPa 155MPa 0

0 0 0

− 310/3 MPa1 =

155/3 MPa 55 MPa 0
55MPa 155/3 MPa 0

0 0 −310/3MPa


(10)

(b)

σ1 = 210MPa, σ2 = 100MPa, σ3 = 0MPa (11)

(c) The two criteria contradict in this case,

σTresca = σI − σIII = 210MPa > 200 MPa =⇒ the material will yield, (12)

σMises =

√
1

2

[
(σI − σII)

2
+ (σII − σIII)

2
+ (σI − σIII)

2
]
= 181.93MPa =⇒ the material will not yield.

(13)

Both criteria are empirical, hence no decision can be made.

Question 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reference: Cleland Foundations of Nanomechanics, Springer, p. 174.

(a) A solid is subjected to the stress given below. Find the three stress invariants and the three principal values of
stress. Solve for the directions of the three principal axes.

σ =

1 1 0
1 1 0
0 0 3

 Pa (14)
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(b) A solid is subjected to the stress given below. Find the expression for the stress tensor if the coordinate axes are
rotated by 60◦ counterclockwise about the z-axis.

σ =

2 1 0
1 0 0
0 0 4

 Pa (15)

(c) A solid is stressed according to the tensor below. Show that for this form, the stress tensor is invariant under
rotations about the z-axis.

σ =

a 0 0
0 a 0
0 0 b

 (16)

Solution:
(a) The three invariants are

I1 = tr(σ) = σxx + σyy + σzz = 5 Pa,
I2 = σxxσyy + σyyσzz + σxxσzz − σ2

xy − σ2
yz − σ2

xz = 6 Pa,
I3 = det(σ) = 0 Pa.

(17)

The principal stresses are the eigenvalues λi (i = 1 . . . 3) of σ, i.e. the roots of the characteristic polynomial. The
invariants reappear here as the coefficients of the polynomial,

λ3 − I1λ
2 + I2λ− I3 = 0. (18)

The roots are λ1 = 3 Pa, λ2 = 2 Pa, λ3 = 0 Pa. The eigenvectors ei (i = 1 . . . 3) are obtained by solving for the
components of ei in the equation

σei = λiei. (19)

For each i, we have three equations and three unknowns (the components of ei),

λ1 :

1 1 0
1 1 0
0 0 3

e1xe1y
e1z

 = 3

e1xe1y
e1z

 → e1 =

00
1

 ,

λ2 :

1 1 0
1 1 0
0 0 3

e2xe2y
e2z

 = 2

e2xe2y
e2z

 → e2 =

11
0

 ,

λ3 :

1 1 0
1 1 0
0 0 3

e3xe3y
e3z

 = 0

e3xe3y
e3z

 → e3 =

−1
1
0

 .

(20)

(b) The rotation matrix that transforms from rotated to original frame is (θ = 60◦)

R =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 =

 1
2 −

√
3
2 0√

3
2

1
2 0

0 0 1

 . (21)

If we right-multiply this matrix with a column vector whose components are given in the rotated frame, then we
get the representation of this vector in the original coordinate system. The rotated stress tensor is computed as

σ′ = RTσR (matrix notation),
↔ σ′

ij = RkiRljσkl (index notation).
(22)
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Carrying out the multiplication, we find

σ′ =
1

2

 (
1 +

√
3
)

−
(
1 +

√
3
)

0

−
(
1 +

√
3
) (

3−
√
3
)

0
0 0 8

 . (23)

(c) The rotation matrix has the form

R =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 . (24)

Rotation of the stress tensor gives

σ′ = RTσR =

a 0 0
0 a 0
0 0 b

 = σ, independent of θ. (25)

Q.E.D.


