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Department of Microsystems Engineering
University of Freiburg



Contents

1 Introduction 1
1.1 Structure of matter at the atomic scale . . . . . . . . . . . . . 1
1.2 Interatomic forces and the potential energy . . . . . . . . . . . 2

2 Molecular dynamics 6
2.1 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Newton’s equations of motion . . . . . . . . . . . . . . 6
2.1.2 Kinetic energy and energy conservation . . . . . . . . . 8

2.2 Integration algorithms . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Euler integration . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Leap-frog integration . . . . . . . . . . . . . . . . . . . 10
2.2.3 Verlet integration . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 Velocity-Verlet integration . . . . . . . . . . . . . . . . 11

3 Pair potentials 15
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Pair potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Dispersion forces . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Lennard-Jones potential . . . . . . . . . . . . . . . . . 17

3.3 Short-ranged potentials . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Neighbor list search . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Temperature control 21
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Simple themostatting schemes . . . . . . . . . . . . . . . . . . 22

4.2.1 Velocity rescaling . . . . . . . . . . . . . . . . . . . . . 22
4.2.2 Berendsen thermostat . . . . . . . . . . . . . . . . . . 22

4.3 Equilibrating a molecular simulation . . . . . . . . . . . . . . 24

5 Embedded-atom method potentials 25
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3



5.2 Functional form . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3 Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.4 Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Parallel computers and the Message Passing Interface 31
6.1 Parallel hardware architectures . . . . . . . . . . . . . . . . . 31
6.2 Scaling consideration . . . . . . . . . . . . . . . . . . . . . . . 32
6.3 Programming model . . . . . . . . . . . . . . . . . . . . . . . 32

6.3.1 Example: Monte-Carlo estimate of the number π . . . 32

7 Domain decomposition 33
7.1 Simulation domain . . . . . . . . . . . . . . . . . . . . . . . . 33
7.2 Decomposition into Cartesian domains . . . . . . . . . . . . . 34
7.3 Ghost atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.4 Communication pattern . . . . . . . . . . . . . . . . . . . . . 34

8 Periodicity and pressure 36
8.1 Periodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.2 Ghost atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.3 Pressure and stress . . . . . . . . . . . . . . . . . . . . . . . . 37

A Dynamical systems 39
A.1 Hamilton’s equations of motion . . . . . . . . . . . . . . . . . 39
A.2 D’Alembert’s principle . . . . . . . . . . . . . . . . . . . . . . 42

A.2.1 Constraints and generalized coordinates . . . . . . . . 42
A.2.2 D’Alembert’s principle . . . . . . . . . . . . . . . . . . 44

B Phase space, statistics and thermodynamics 47
B.1 Phase space and phase space averages . . . . . . . . . . . . . . 48
B.2 Few microstates . . . . . . . . . . . . . . . . . . . . . . . . . . 49
B.3 The microcanonical ensemble, equal a-priori probabilities and

entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
B.3.1 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . 50
B.3.2 The ideal gas . . . . . . . . . . . . . . . . . . . . . . . 52

B.4 The canonical ensemble . . . . . . . . . . . . . . . . . . . . . . 55
B.4.1 Temperature, pressure, chemical potential . . . . . . . 55
B.4.2 The heat bath . . . . . . . . . . . . . . . . . . . . . . . 56

B.5 The grand-canonical ensemble . . . . . . . . . . . . . . . . . . 58
B.6 Ergodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
B.7 Normalization of the n-dimensional phase-space density . . . . 59
B.8 Integrating out n− 1 degrees of freedom . . . . . . . . . . . . 61

0



B.9 The thermodynamic limit: Integrating out 3N → ∞ degrees
of freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

1



Chapter 1

Introduction

Context: We start by introducing the concept of the potential energy and
the interatomic force. Those are the central ingredients to the molecular
dynamics simulation method.

Additional resources:

• Chapter 1 of Allen & Tildesley, Computer Simulation of Liquids

• Chapters 1 and 2 of Interatomic potentials: Achievements and
challenges

1.1 Structure of matter at the atomic scale

All matter is build out of quark and leptons, or perhaps even smaller par-
ticles, but for the sake of modeling the real material world the atom is the
fundamental unit. Atoms can be described by nuclei and electrons or through
“coarse-grained” models that ignore the fact that there are electrons. Both
types of models are useful for describing materials, and the latter ones will
be extensively used in this class.

Atoms in solids can arrange in different configurations that are called
crystals when there is long-ranged order or glasses when there is not. (All solid
matter typically has short-ranged order that is determined by the chemical
bonds between atoms.) Atoms in solids are immobile and self-diffusion is
limited. Conversely, liquids and gases are disordered (like glasses) but have
mobile constituent atoms. Macroscopic object typically contain a lot of atoms
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– on the order of Avogadro’s constant NA ≈ 6 × 1023. The atomic-scale
simulation techniques discussed in this class can at the time of this writing
(the 2020s) casually treat on order of ∼ 107 atoms. This can be pushed
to 1013 Eckhardt et al. (2013); Tchipev et al. (2019) if you use the biggest
computers available to us (in combination with computationally-efficient
models). Of course, this boundary moves towards larger systems as computer
technology evolves.

Nowadays, we can even observe matter at atomic scales and “see” individ-
ual atoms. The collaborative research center 103 has produced an extremely
instructive video on the structure of specific type of alloys, dubbed “superal-
loy”, that is used in e.g. turbine blades. Enjoy the ride from the blade to the
atom. This class is about modeling matter at the smallest scales that you see
in this video.

1.2 Interatomic forces and the potential en-

ergy

Atoms interact via forces. As Feynman put it in his famous lectures on physics,
the fundamental truth about man’s understanding of the physical world is
“that all things are made of atoms – little particles that move around in
perpetual motion, attracting each other when they are a little distance apart,
but repelling upon being squeezed into one another” Feynman et al. (1964).
Indeed this statement summarizes the essence of the molecular dynamics
simulation method.

As the simplest example why atoms attract each other, let us consider
the example of simple salt, e.g. Na-Cl that we all have sitting in our kitchen.
Na-Cl in its solid form is an ionic crystal. Na atoms have approximately a
charge of qNa = +1|e|, where e is the electron charge, and Cl atoms have
a charge of approximately qNa = −1|e|. The Coulomb interaction between
these atoms is a fundamental force of nature. Basic physical principles tell
us, that the interaction energy between a Na and a Cl atom is given by

VCoulomb(r; qNa, qCl) =
1

4πε0

qNaqCl

r
. (1.1)

We also know that this energy is pair-wise additive, allowing us to write down
the Coulomb interaction energy for Na-Cl consisting of N atoms,

ECoulomb({r⃗i}) =
N∑
i=1

N∑
j=i+1

VCoulomb(rij; qi, qj) =
1

4πε0

N∑
i=1

N∑
j=i+1

qiqj
rij

(1.2)
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where qi is the charge on atom i and rij = |r⃗i− r⃗j| the distance between atom
i and j. Note that we have introduced — in passing — a central quantity
of the molecular dynamics method, the atomic positions r⃗i and Eq. (1.2)
indicates that the interaction energy depends on the positions of all atoms.

The Coulomb interaction has a singularity at r → 0. The attractive force
between opposite charges becomes infinitely large. The salt crystal does
not collapse because atoms are, as Feynman puts it, “repelling upon being
squeezed into one another”. While the attraction between our Na and Cl
atoms are described by a fundamental force of nature, it is more difficult to
understand the origin of this repulsion. Hand-wavingly, it goes back to the
fact that electrons are Fermions and electrons from the electron shells of Na
and Cl therefore cannot exist at the same point in space (and the same spin
state). This is the Pauli exclusion principle, and the resulting repulsive force
is called Pauli repulsion.

Different models for the Pauli repulsion exist. While the Coulomb interac-
tion is a fundamental force of nature, these models are approximations to the
true quantum physics that is the origin of the repulsive form. Two common
forms are exponential repulsion,

Erep,exp({r⃗i}) =
N∑
i=1

N∑
j=i+1

Ae−r/ρ, (1.3)

or an algebraic repulsion of the form

Erep,12({r⃗i}) =
N∑
i=1

N∑
j=i+1

Ar−12. (1.4)

Note that A and ρ are parameters, that need to be somehow determined.
This can be done with the help of either experimental data or first-principles
calculations, that treat the electrons explicitly. These parameters depend
on the atom types under consideration and, in contrast to the parameter
that show up in the Coulomb interaction (the permittivity ε0), they are not
universal.

For our Na-Cl model, we combine Coulomb interaction with an exponential
repulsion, to give the total energy

Epot({r⃗i}) =
N∑
i=1

N∑
j=i+1

(
Aije

−rij/ρij +
1

4πε0

qiqj
rij

)
. (1.5)

This energy is called the potential energy and is the central property of an
atomic-scale model. With Eq. (1.5), we have also encountered our first atomic-
scale model for a real material, called the Born-Mayer potential. Potentials
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that can be decomposed as Eq. (1.5) into pair-wise terms are called pair
potentials. They are often written as

Epot({r⃗i}) =
N∑
i=1

N∑
j=i+1

V (rij), (1.6)

with

V (rij) = Aije
−rij/ρij +

1

4πε0

qiqj
rij

(1.7)

for the above potential. The quantity V (rij) is called the pair interaction
energy.

The most famous pair-potential is likely the Lennard-Jones potential.
(Unlike Born and Mayer, Lennard-Jones is a single person.) Its pair interaction
energy is given by

V (rij) = 4ε

[(
σ

r

)12

−
(
σ

r

)6
]
. (1.8)

The repulsive term ∝ r−12 is one of the models for Pauli repulsion discussed
above. The attractive term ∝ r−6 arises from London dispersion interactions.
Dispersion forces exist between all atoms, even uncharged molecules or noble
gases. They are widely employed for the nonbonded portion of what are
called valence force-fields. Simple Lennard-Jones systems are often used to
study generic phenomena found in real materials, e.g. the glass transition
or plasticity of amorphous materials. However, there are limitations to
pair potentials, and more sophisticated potential energy models have been
developed over the past decades to address shortcomings of simple potentials.
In particular, the assumption of pair additive intrinsic to the equations of
this chapter is often not valid. We will discuss how to lift these limitations in
Chapter 3.

Note: A repulsive term of the form r−12 is advantageous from a simulation
point of view, since it is faster to compute than an exponential. This
has helped popularize the Lennard-Jones potential in the early days of
molecular dynamics simulations.

Writing the potential energy of a system of particles allows the derivation
of the forces acting on these particles:

f⃗k = − ∂

∂r⃗k
Epot({r⃗i}). (1.9)
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These forces are the essential ingredient to molecular dynamics, as they
determine the motion of the atoms, in accordance to Newton’s second law.

The potential energy itself describes what is called the potential energy
landscape. The potential energy landscape depends on 3N degrees of freedom
(as compared to the landscape we experience while walking, which depends
on 2 degrees of freedom); it is therefore an object that is complex to visualize.
Simplifying some of its aspects is the core of molecular statics. For example,
it is often important to identify the ground-state of a system; this is the
most stable configuration of a material and has the lowest possible potential
energy. There is usually some crystal that is lower in energy than the energy
of a glass with the same stoichiometry. Yet, in many real-world engineering
applications, the materials are not in their crystalline ground-state: the most
common material we encounter with this property may be window glass. In
molecular statics, we therefore seek to enumerate those local minima of the
potential energy landscape and the energy barriers between them.

Since the dynamics of a molecular system is determined by the forces
acting on the individual atoms, we only need to specify the potential energy up
to a constant, which disappears in the derivative Eq. (1.9). We can therefore
measure the potential energy with respect to any reference configuration.
This reference configuration is often the atomized state of the material, where
all the constituent atoms sit individually in vacuum and are not interacting
with each other. If this reference situation is assigned the energy 0, then the
potential energy is generally negative, because if it was positive the system
would spontaneously atomize. (Remember, any physical system evolves to a
state of lower energy.)
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Chapter 2

Molecular dynamics

Context: Molecular dynamics follows the motion of individual atoms
through a solution of Newton’s equations of motion. We need integration
algorithms to be able to solve this set of coupled differential equations on
a computer.

Additional resources:

• Chapter 3 of Allen & Tildesley, Computer Simulation of Liquids

• Appendix A on dynamical systems.

2.1 Equations of motion

2.1.1 Newton’s equations of motion

We have already (almost) all the ingredients to carry out a molecular dynamics
simulation. From our or potential energy expression Epot({r⃗i}) discussed in
the previous chapter, we obtain the force

f⃗i = −∂Epot/∂r⃗i (2.1)

on each of the N atoms. Once we know the forces, we can obtain the
accelerations a⃗i through Newton’s third law,

f⃗i = mia⃗i. (2.2)

We are therefore assuming that atom i can be described as a point of mass
mi! The mass can be obtained from the periodic table of elements. Note that
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the mass listed in the periodic table is usually the average over all isotopes
weighted by their occurrence on earth, and this mass is used for most practical
purposes. For some application, in particular to understand the different
behavior of Hydrogen and Deuterium, it can be necessary to actually model
the individual isotopes by using their respective mass.

We further have a⃗i = ˙⃗vi, where v⃗i is the velocity of atom i, and v⃗i = ˙⃗ri.
The dot superscript indicates derivative with respect to time. The set of
linear differential equations to solve is therefore

v̇i(t) = f⃗i(t)/mi and ˙⃗ri(t) = v⃗i(t) (2.3)

with the initial (boundary) conditions r⃗i(0) = r⃗0 and v⃗i(0) = v⃗0. Note that
the boundary condition is an integral part of the differential Eq. (2.3). The
state of the system is therefore fully and uniquely determined by the positions
r⃗i and the velocities v⃗i of all atoms. This set of positions r⃗i and momenta
p⃗i = v⃗i/mi defines a point in phase-space Γ⃗ = {r⃗i, p⃗i}. The evolution of
position and velocities given by Eq. (2.3) can therefore be thought of as a
single point moving in the 6N dimensional phase-space.

Code example: For a molecular dynamics code, it is useful to have a
data structure that represents the state of the simulation and stores at
least positions and velocities. This data structure could also store element
names (or atomic numbers), masses and forces. An example that uses
Eigen arrays as the basic array container is shown below. As a general
rule, the data structure should be designed in a way that data that is
processed consecutively is also stored in memory in a contiguous manner.
This ensures predictable memory access patterns and efficient caching
of the data necessary for computation. Instead of the Atoms container
described below, we could be tempted to create a class Atom that contains
the positions, velocities, etc. of a single atom and then use an array (e.g.
std::vector<Atom>) of that class as the basic data structure. However,
positions are then no longer consecutive in memory: they are interlaced
with other atomic data. A function (e.g. computing forces) that does
not need the velocities would still load them into the cache, causing
more data transfers between cache and RAM, lowering performance. For
high-performance numerical code, it is therefore always preferable to use
structures of arrays rather than arrays of structures.

1 // Type aliases

2 using Positions_t = Eigen :: Array3Xd;

3 using Velocities_t = Eigen :: Array3Xd;

4 using Forces_t = Eigen :: Array3Xd;
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5

6 struct Atoms {

7 Positions_t positions;

8 Velocities_t velocities;

9 Forces_t forces;

10

11 Atoms(Positions_t &p)

12 : positions{p},

13 velocities {3, p.cols()},

14 forces{3, p.cols()} {

15 velocities.setZero ();

16 forces.setZero ();

17 }

18

19 size_t nb_atoms () const {

20 return positions.cols();

21 }

22 };

2.1.2 Kinetic energy and energy conservation

In addition to the potential energy Epot({r⃗i}), the dynamical state of a system
is characterized by its kinetic energy,

Ekin({p⃗i}) =
∑
i

1

2

p2i
mi

. (2.4)

Note: The temperature is simply a measure of the kinetic energy of the
system, 3

2
NkBT = Ekin where N is the number of atoms. In other words,

Ekin measures the variance of the velocity distribution, which is Gaussian.
We will learn more about this when discussing the basics of statistical
mechanics.

The total energy

H({r⃗i}, {p⃗i}) = Ekin({p⃗i}) + Epot({r⃗i}) (2.5)

is a conserved quantity during the motion of the atoms. This can be seen by
showing that the derivative of the total energy with respect to time vanishes,

Ḣ = Ėkin + Ėpot =
∑
i

p⃗i ˙⃗pi
mi

+
∑
i

∂Epot

∂r⃗i
˙⃗ri =

∑
i

v⃗if⃗i −
∑
i

v⃗if⃗i = 0. (2.6)
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H is also called the Hamiltonian of the system.

Note: Measuring the total energy (or any other conserved quantity!) and
checking whether it is constant in a molecular dynamics simulation is a
way of testing if the time step ∆t used in the numerical integration is
small enough. We will discuss numerical integration in detail below.

A generalization of Newton’s equations of motion are Hamilton’s equations
of motion,

˙⃗ri =
∂H

∂p⃗i
(2.7)

˙⃗pi = −∂H

∂r⃗i
, (2.8)

and it is straightforward to show that these equations reduce to Newton’s
equations of motions for the Hamiltonian given by Eq. (2.5). Hamilton’s
equation of motion remain valid when positions r⃗i and momenta p⃗i are replaced
by generalized coordinates that consider constraints, such as for example the
angle of a (rigid) pendulum. These equations will become important when we
discuss statistical mechanics and temperature control in molecular dynamics
simulations using thermostats, where a generalized degree of freedom is the
internal state of the heat bath that controls the temperature.

2.2 Integration algorithms

The main ingredient in any molecular dynamics simulation, regardless of
the underlying model, is the numerical solution of Eqs. (2.3). A plethora of
algorithms have been developed over the years, but for most practical purposes
the Velocity-Verlet algorithm is used nowadays. For instructive purposes we
will start out with a simple integration method, the Euler integration, before
discussing Velocity-Verlet.

2.2.1 Euler integration

In order to follow the trajectories of all atoms, we need to integrate the above
differential equation. On a computer, a continuous differential equation needs
to be replaced by a discrete equation. Equations (2.3) are continuous in time
and hence need to be discretized. (Note that our system is already discrete
spatially since we are dealing with mass points, but each of these points
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corresponds to a physical object, so this is not the result of a discretization
procedure.) The simplest numerical integration scheme is the forward Euler
algorithm, in which forces and velocities are assumed to be constant over
time intervals ∆t.

To see this, we write the above differential equation as

dv⃗i =
f⃗i(t)

mi

dt and dr⃗i(t) = v⃗i(t) dt (2.9)

i.e., we move the differential dt of ˙⃗vi = dv⃗/dt to the right hand side of the
equation. We can now straightforwardly integrate the equation from time t
to time t+∆t while assuming that f⃗i and v⃗i remain constant. This yields

v⃗i(t+∆t)− v⃗i(t) =
f⃗i(t)

mi

∆t (2.10)

r⃗i(t+∆t)− r⃗i(t) = v⃗i(t)∆t (2.11)

which is obviously only a good approximation for small ∆t! This algorithm is
called Euler integration.

The same equation can be derived by Taylor-expanding r⃗i(t+∆t) up to
first order in ∆t. The integration error of this algorithm is hence O(∆t2). The
Euler algorithm is not reversible, i.e. starting from time t+∆t and integrating
backwards one ends up with a different result at time t. Applying the Euler
algorithm with timestep −∆t gives

v⃗i(t)− v⃗i(t+∆t) = − f⃗i(t+∆t)

mi

∆t (2.12)

r⃗i(t)− r⃗i(t+∆t) = −v⃗i(t+∆t)∆t (2.13)

These equations cannot be re-arranged to give Eqs. (2.10) and (2.11). Forward
Euler integration is generally not a good algorithm and requires very small
time steps.

2.2.2 Leap-frog integration

Leap-frog assumes positions are defined at times ti and velocities at times
ti + ∆t/2, and can be derived from an argument similar to the one given
above. Specifically, we combine the results of a Taylor expansion ±∆t/2,
yielding

v⃗i(t+∆t/2)− v⃗i(t−∆t/2) =
f⃗i(t)

mi

∆t (2.14)

r⃗i(t+∆t)− r⃗i(t) = v⃗i(t+∆t/2)∆t. (2.15)
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Note that Eq. (2.14) is similar to Eq. (2.10), except the force is evaluated at
the mid-point. The resulting algorithm is reversible. Applying the Leap-frog
algorithm with timestep −∆t gives

v⃗i(t−∆t/2)− v⃗i(t+∆t/2) = − f⃗i(t)

mi

∆t (2.16)

r⃗i(t)− r⃗i(t+∆t) = −v⃗i(t+∆t/2)∆t (2.17)

Bring the terms on the left hand side to the right and vice-versa, and you
arrive at the original equations for forward integration. Leap-frog is therefore
reversible.

2.2.3 Verlet integration

Let us now Taylor expand r⃗i(t±∆t) up to third order in ±∆t,

r⃗i(t±∆t) = r⃗i(t)± v⃗i(t)∆t+
1

2mi

f⃗i(t)∆t2 ± 1

6

˙̇̇
r⃗i(t)∆t3 +O(∆t4). (2.18)

Note that only the odd exponents see the sign of ±∆t. The sum of this
equation for expansion in +∆t and −∆t gives the positions update,

r⃗i(t+∆t) + r⃗i(t−∆t) = 2r⃗i(t) +
1

mi

f⃗i(t)∆t2 +O(∆t4). (2.19)

Eq. (2.19) is called the Verlet algorithm. Instead of requiring the positions
{r⃗i(t)} and velocities {v⃗i(t)} it requires the positions of the current {r⃗i(t)}
and past {r⃗i(t−∆t)} times for the integration.

The difference between the expansion for +∆t and −∆t yields the veloci-
ties,

r⃗i(t+∆t)− r⃗i(t−∆t) = 2v⃗i(t)∆t+O(∆t3). (2.20)

Note that in order to compute the velocities at time t in the regular Verlet
algorithm, we need to know the positions at time t+∆t. Verlet and Leap-
Frog are identical algorithms, since Leap-Frog stores the velocities at the
intermediate time t + ∆t/2. It is usually useful to be able to know both,
positions and velocities, at time t. This problem is solved by the Velocity-
Verlet algorithm, described in the following section.

2.2.4 Velocity-Verlet integration

Let us now also Taylor expand r⃗i(t) up to third order in ∆t at r⃗i(t+∆t), i.e.
we integrate backwards in time from t+∆t to t. This gives

r⃗i(t) = r⃗i(t+∆t)− v⃗i(t+∆t)∆t+
1

2mi

f⃗i(t+∆t)∆t2 − 1

6

˙̇̇
r⃗i(t)∆t3 +O(∆t3)

(2.21)
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Equation (2.18) is the positions update of the Velocity-Verlet algorithm. The
sum of Eq. (2.18) and Eq. (2.21) gives the velocity update in the Velocity-
Verlet algorithm:

r⃗i(t+∆t) = r⃗i(t) + v⃗i(t)∆t+
1

2mi

f⃗i(t)∆t2 (2.22)

v⃗i(t+∆t) = v⃗i(t) +
1

2mi

(
f⃗i(t) + f⃗i(t+∆t)

)
∆t, (2.23)

Note that this algorithm is often split in the form of a predictor-corrector
scheme since this saves computation time and the necessity to keep past forces
around. The predictor step is

v⃗i(t+∆t/2) = v⃗i(t) +
1

2mi

f⃗i(t)∆t (2.24)

r⃗i(t+∆t) = r⃗i(t) + v⃗i(t+∆t/2)∆t (2.25)

where v⃗i(t+∆t/2) is the predicted velocity. After this we compute new forces,

f⃗i(t+∆t). We then correct the velocities via

v⃗i(t+∆t) = v⃗i(t+∆t/2) +
1

2mi

f⃗i(t+∆t)∆t (2.26)

The Velocity-Verlet algorithm is the integration algorithm used in most
molecular dynamics codes. It has the additional properties that is it symplectic,
which means it conserves phase-space volume. We will come back to what
this mean when talking about statistical mechanics.

Code example: We can implement the velocity-verlet algorithm in a few
lines of C++ code using vectorized Eigen operations. The prediction step

1 void verlet_step1(Atoms &atoms , double timestep ,

2 double mass) {

3 atoms.velocities += 0.5 * atoms.forces * timestep /

mass;

4 atoms.positions += atoms.velocities * timestep;

5 }

implements Eq. (2.24). We then compute new forces and correct the
velocities via

1 void verlet_step2(Atoms &atoms , double timestep ,

2 double mass) {

3 atoms.velocities += 0.5 * atoms.forces * timestep /

mass;

4 }
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Note: The timestep in MD simulations has to be on the order of femtosec-
onds, in order to resolve the fastest atomic vibrations. For example, in
simulations with metals and Embedded Atom Method (EAM) potentials,
∆t = 1 fs is typically a safe choice. How can we check that the timestep is
sensible? One possibility is to simply let a configuration in time using the
Velocity-Verlet algorithm. This is sometimes called the micro-canonical
or NVE ensemble. (NVE because number of atoms, volume and energy
is constant.) We then record the evolution of the total (kinetic plus
potential) energy, which should be constant. Due to the approximations
described above, discrete time integration schemes introduce numerical
errors. If ∆t is larger than a critical value, the integration error grows
unstable and causes a noticeable drift of the total energy. The figures
below show the results of such a simulation. A system of 108000 Au atoms
was simulated for 100 ps with various values of ∆t. The y-axis shows the
difference between the current and initial values of the total energy. The
data was smoothened to suppress high-frequency fluctuations in the figure.
For this system, even 5 fs would still be an acceptable time step.
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Chapter 3

Pair potentials

Context: Interatomic forces or interatomic potentials determine the
material that we want to study. There is a plethora of interatomic
potentials of varying accuracy, transferability and computational cost
available in the literature. We here discuss simple pair potentials and
point out algorithmic considerations.

Additional resources:

• Chapter 3 of Interatomic potentials: Achievements and challenges

3.1 Introduction

The expression for Epot

(
{r⃗i}

)
is the model for the material that we use

in our molecular dynamics calculations. It determines whether we model
water, proteins, metals, or any other physical object. Models are typically
characterized by their accuracy, their transferability and the computational cost
involved. (Computational cost also includes the computational complexity.) At
constant computational cost, there is always a tradeoff between accuracy and
transferability. Accuracy and transferability can typically only be improved
at the expense of additional computational cost.

• Accuracy: Accuracy describes how close to we can get to a reference
metric, experimentally measured or theoretical. For example, we can
compare the vacancy formation energy to experimental values, and
compute accuracy as the absolute value of the energy difference Evac −
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Eexp
vac , which can be 1 eV, 0.1 eV (typical), 0.01 eV (computationally

expensive!). (The vacancy formation energy is the energy required to
remove a single atom from a solid. The resulting “hole” in the solid is
called a vacancy.)

• Transferability: Transferability describes the ability for a model to
satisfy different accuracy metrics. Let’s assume we get the vacancy
formation energy right to within 0.1 eV of the experimental value. Does
the interstitial formation energy, i.e. the energy to insert an additional
atom between lattice sites, give the same value? If so, then the potential
is transferable between these two situations. Most interatomic potentials
are not generally transferable, and they need to be tested when used in
new situations, e.g. when the potential has been used to study crystals,
but you want to use it to study a glass.

• Computational cost: Computational cost describes the number of float-
ing point operations to compute an energy or a force. (Nowadays, actual
electrical energy requirements for doing the calculation would be a better
measure.) This is related to computational complexity, that describes
how the computational cost (i.e. the number of operations required to
compute the result) scales with the number of atoms. Ideally we would
like O(N) complexity (i.e. a system with twice as many particles takes
twice the computing time), but many methods do not scale linearly.
Quantum methods (tight-binding, density-functional theory) are usually
O(N3) or worse.

3.2 Pair potentials

We have already encountered the simplest (and oldest) form of interaction
potential, the pair potential. The total energy for a system interacting in
pairs can be written quite generally as

Epot

(
{r⃗i}

)
=

1

2

N∑
i=1

N∑
j=1

V
(
rij
)
=
∑
i<j

V (rij) (3.1)

where rij = |r⃗i − r⃗j| is the distance between atom i and atom j. V (rij) is
the pair interaction energy or just the pair potential and we assume that the
interaction is pair-wise additive. The sum on the right (

∑
i<j) runs over all

pairs while sum on the left double counts each pair and therefore needs the
factor 1/2. We have already seen a combination of the electrostatic potential
and Pauli repulsion as an example of a pair-potential earlier.
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Forces are computed by taking the negative gradient of this expression.
The force on atom k is given by

f⃗k = −∂Epot

∂r⃗k
= −1

2

∑
ij

∂V

∂rij

∂rij
∂r⃗k

= −1

2

∑
ij

∂V

∂rij
r̂ij
(
δik − δjk

)
=
∑
i

∂V

∂rik
r̂ik,

(3.2)
where r̂ik = r⃗ik/rik is the unit vector pointing from atom k to atom i and
δik is the Kronecker delta. Note that these forces are symmetric, i.e. the
term ∂V/∂rikr̂ik shows up in the expression not only for the force on atom k,
but also (with an opposite sign) for the force on atom i. This is Newton’s
third law, a consequence of momentum conservation. (The sum over all forces
needs to be equal to the applied external forces.) A typical implementation
would therefore loop over all pairs between atoms, compute this pair term,
then add it to the array entries holding the forces for both atoms.

3.2.1 Dispersion forces

An important contribution to interatomic and intermolecular interactions is
the London dispersion force. This interaction is attractive, and acts between
all atoms, even noble gases. Its origin lies in fluctuations of the atomic dipole
moment. (This is a quantum mechanical effect, but the simplest model would
be an electron orbiting a nucleus with a rotating dipole moment.) This
fluctuating dipole induces a dipole in a second atom and these interact. The
interaction decays as r−6 at short distances. London dispersion forces are
one of the forces that are often subsumed under the term van-der-Waals
interaction.

3.2.2 Lennard-Jones potential

The Lennard-Jones potential combines dispersion forces with an empirical
r−12 model for Pauli repulsion. It is typically used for the interaction of
noble atoms or molecules, i.e. systems that have closed electronic shells and
therefore do not form covalent bonds. The interactions described by the
Lennard-Jones potential are often called nonbonded interactions, because the
typical interaction energy is on the order of kBT (with room temperature
for T ). Thermal fluctuation can thereby break this bond, hence the term
nonbonded.

One typical form to writing the Lennard-Jones potential is

V (r) = 4ε

[(
σ

r

)12

−
(
σ

r

)6
]

(3.3)
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where ε is an energy and σ a length. The potential has a minimum as
r = 21/6σ and is repulsive for shorter distances and attractive for larger
distances. For a noble gas (e.g. Argon), ε ∼ 0.01 eV and σ ∼ 3 Å.

3.3 Short-ranged potentials

Implementing Eq. (3.1) naively leads to a complexity of O
(
N2
)
because the

sum contains N2 terms. The trick is to cut the interaction range, i.e. set
energies and forces to zero for distances larger than a certain cut-off distance
rc. This is possible because V (r) → 0 as r → ∞. Potentials for which this
asymptotic decay is fast enough can be cut-off and are called short-ranged.
Note that we have already encountered a case in Chap. 1 for which this is
not possible: the Coulomb interaction that has the form V (r) ∝ 1/r, which
decays to 0 too slowly.

A simple way to see why this is not possible for the Coulomb interaction
is to lump the charge-neutral infinite solid into charge-neutral dipoles. The
effective interaction between dipoles then falls of as V eff (r) ∝ 1/r3. The
contribution to the energy from all dipoles at distance r is V (r) r2 ∝ 1/r. The
full energy is obtained by integrating this function over r, but the integral does
not converge! This illustrates the problem. The discrete sum is convergent,
but only conditionally so, i.e. the outcome depends on the order of summation.
We therefore can only cut interactions that decay as r−4 or faster.

The potential energy with a cutoff looks as follows:

Epot

(
{r⃗i}

)
=

1

2

N∑
i=1

∑
{j|rij<rc}

V
(
rij
)

(3.4)

The difference to Eq. (3.1) is that the second sum runs only over neighbors
of i, i.e. those atoms j whose distance rij < rc where rc is the cutoff radius.
This sum has Nn̄ elements where n̄ is a constant, is the average number of
neighbors within the cutoff radius rc. The complexity of an algorithm that
implements the above sum is hence O(N).

A simple pair potential is often shifted by a constant to make the pair
interaction energy continuous at r = rc (since in general V (rc) ̸= 0). The

potential energy expression is then Epot =
∑

i<j

(
V
(
rij
)
− V (rc)

)
. Note that

only by shifting the potential, forces and potential energy become consistent.
Since only the forces affect the dynamics, the potential energy must be
continuous and the integral of the forces, otherwise the Hamiltonian H is not
a conserved quantity. The shifted potential fulfills these requirements, the
unshifted one does not.
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Figure 3.1: Illustration of the typical data structure used for an O(N) neighbor
search in a molecular dynamics simulation. For searching the neighbors within
a cutoff rc of the red atom, we only need to consider the candidate atoms
that are in the cells adjacent to the red atom.

3.4 Neighbor list search

The sum Eq. (3.4) runs over all neighbors. One important algorithmic step
with complexity O(N) in molecular dynamics codes is to build a neighbor
list, i.e. find all pairs i-j with rij < rc. This is usually done using a domain
decomposition (see Fig. 3.1) that divides the simulation domain in cells of a
certain size and sorts all atoms into one of these cells. The neighbor list can
then be constructed by looking for neighbors in neighboring cells only. If the
cell size b is larger than the cutoff radius, b > rc, then we only need to look
exactly the neighboring cells.

We will here illustrate a typical neighbor search using the two-dimensional
example shown in Fig. 3.1. Let us assume that each atom has a unique index
i ∈ [1, N ], where N is the total number of atoms. (Note: in C++ and other
common languages, indices start at 0 and run to N − 1.) A neighbor search
algorithm first builds individual lists {Bk,mn} that contain the indices off all
atoms in cell (m,n), i.e. k ∈ Nnm where Nnm is the number of atoms in this
cell. The cell can simply be determined by dividing the position of the atom
by the cell size b, i.e. atom i resides in cell mi = ⌊xi/b⌋ and ni = ⌊yi/b⌋
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where ⌊·⌋ indicates the closest smaller integer. The lists {Bk,mn} are most
conveniently stored in a single contiguous array; for purposes of accessing
individual cells, a second array is required that stores the index of the first
entry of the cell (m,n). Note that this second array’s size is equal to the
number of cells, and can become prohibitively large when the system contains
a lot of vacuum.

The neighbor search then proceeds as follows: for atom i, compute the cell
(mi, ni) in which this atom resides and then loop over all atoms in this cell
and in cells (mi ± 1, ni), (mi, ni ± 1) and (mi ± 1, ni ± 1). In two dimensions,
this yields a loop over 9 cells, in three-dimensions there the loop runs over 27.
If the distance between these two atoms is smaller than the cutoff rc, we add
it to the neighbor list. Note that if the cell size b is smaller than rc, we need
to include more cells in the search.
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Chapter 4

Temperature control

Context:Most molecular dynamics calculations are carried out in thermal
equilibrium. Equilibrium is typically maintained by coupling the molecular
calculation to a virtual heat bath, with which it exchanges energy but no
particles. This chapter discusses properties of thermal equilibrium and
introduces simple algorithms for heat-bath coupling.

Additional resources:

• Chapters 1-3 of Sethna, Entropy, Order Parameters, and Complexity

• Appendix B on statistical mechanics.

4.1 Introduction

In order to talk about temperature control, we need to discuss the prop-
erties of thermal equilibrium. This is the realm of statistical mechanics or
statistical thermodynamics that is discussed in more detail in Chapter ??
and Appendix B. A key outcome is that the velocity components are dis-
tributed according to a Boltzmann distribution. The velocity magnitude is
then distributed according to a Maxwell-Boltzmann distribution.

A thermostat implicitly couples the atomistic system under investigation
to a much larger heat bath. Because it is much larger, its temperature will
not change when energy flows from and to the heat bath. The atomistic
system becomes canonical and its statistics follows the canonical ensemble. An
ensemble here describes which parameters are constrained, and the canonical
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ensemble is often also called the NVT-ensemble, because particle number N ,
volume V and temperature T are constrained (fixed). An ideal thermostat
guarantees relaxation of the distribution of atomic degrees of freedom to the
canonical distribution function (see Chapter ??).

Here, we will start with a mechanistic treatment of thermostats and un-
derpin it with more rigorous theory in Chapter ??. The present chapter
teaches the basic concepts required for an implementation of simple ther-
mostatting schemes. Thermostats can be roughly categorized into constraint
methods (velocity rescaling and Berendsen), stochastic methods (Andersen,
Langevin and dissipative particle dynamics) and extended system methods
(Nosé-Hoover). Constraint and extended system methods are deterministic,
i.e. they follow the same path when starting from the same initial state. In
this chapter we will only discuss the simple constraint methods. We will come
back to more advanced methods for temperature control later in these notes.

4.2 Simple themostatting schemes

4.2.1 Velocity rescaling

The crudest (and simplest) form of fixing the temperature in a molecular
dynamics simulation to a value of T0 is by velocity rescaling. Since the
instantaneous temperature is

3

2
NkBT =

∑
i

1

2
mv2i , (4.1)

we obtain a temperature of T0 if we rescale all velocities by

v⃗i → λv⃗i with λ =

√
T0

T
(4.2)

after every time step. This is a very intrusive way of setting the temperature
and should not be used in any practical situations, but it is a good illustration
of how a simple constraint method works.

4.2.2 Berendsen thermostat

The Berendsen et al. (1984) thermostat uses a damping or acceleration term to
control the temperature. The governing equations of motion of the Berendsen
thermostat are

m ˙⃗vi = f⃗i +
m

2τ

(
T0

T
− 1

)
v⃗i (4.3)
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where τ is a relaxation time constant. The factor in front of the velocity
is a damping coefficient. The coefficient vanishes for T = T0, Eq. (4.3)
then reduces to Newton’s equation of motion. However, it has a positive
sign (=speeds up particles) for T < T0 and has negative sign (=slows down
particles) for T > T0. From Eq. (4.3) we can easily derive a differential
equation for the evolution of the temperature:

3kB
dT

dt
=
∑
i

mv⃗i · ˙⃗vi (4.4)

=
∑
i

[
v⃗i · f⃗i +

1

2τ

(
T0

T
− 1

)
mv2i

]
(4.5)

= −dEpot

dt
+

3kB(T0 − T )

τ
(4.6)

This can be written as
dT

dt
= −T − T0

τ
+ S (4.7)

where S = − 1
3kB

dEpot

dt
is the change of potential energy and constitutes an

additional temperature (energy) source.
For S = 0, this equation is solved by

T (t) = T0 + (T1 − T0)e
−t/τ (4.8)

The temperature relaxes exponentially from the intial value T1 towards T0.
We directly see that τ in Eq. (4.3) is indeed the relaxation time constant.

Note that Eq. (4.8) suggests an implementation of the Berendsen ther-
mostat in terms of velocity rescaling. During at single time step ∆t ≪ τ ,
the temperature should from T to T0 + (T − T0)e

−∆t/τ . We can imple-
ment this as velocity rescaling, Eq. (4.2), but with the target temperature
T0 + (T − T0)e

−∆t/τ instead of T0, i.e. with a scaling factor

λ =

√
T0

T
+

(
1− T0

T

)
e−

∆t
τ ≈

√
1 +

(
T0

T
− 1

)
∆t

τ
(4.9)

where T is the current (measure) temperature and T0 is the target temperature.
A Berendsen thermostat therefore constitutes a gentle way of rescaling

velocities. The relaxation time τ determines the strength of the coupling
between thermal bath and atomistic system. The velocity rescaling limit
λ →

√
T0/T is obtained as τ → ∆t. Thermostats should be tuned as weak as

possible and as strong as necessary to disturb the system the least while still
allowing it to reach the target temperature within the simulation time. There
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is the additional requirement τ ≫ ∆t (where ∆t is the time step), otherwise
equation Eq. (4.7) will not be sampled properly numerically. The velocity
rescaling thermostat discussed above is bad because it is very strong, but also
because it violates τ ≫ ∆t.

4.3 Equilibrating a molecular simulation

A “happy” molecular dynamics simulation will nicely run at constant tem-
perature. Simulations are only this happy once they are equilibrated and
this equilibration implies that the positions {r⃗i} are such that the system
resides somewhere near a (potentially local) minimum in the potential energy
landscape. When we set up a new simulation, we have to guess a set of
{r⃗i} that are often far away from this minimum. (For crystalline solids this
guess is simple, since we typically know the crystal structure that we are
interested in. For liquids, the guess is more difficult since the overall structure
is disordered.) Since the forces {f⃗i} point towards the minimum, the system
will evolve in this direction and the potential energy Epot will decrease over
time, dEpot/dt < 0. Equation (4.7) tells us, that this leads to an increase in
temperature since S > 0.

A common problem is that this temperature can be large enough to
vaporize the system, i.e. the temperature increases above the vaporization
point. The first step in any molecular dynamics simulation is hence to
equilibrate the system while avoiding a temperature rise above the point of
vaporization (or melting if you are setting up a solid). This can be achieved by
running a calculation with a Berendsen thermostat and a strong coupling (i.e.
a small τ). Once the system has equilibrated, the value of τ can be adjusted
to a more reasonable relaxation time that does not disturb the calculation
too much. Good values for τ are between 1 ps and 10 ps.

Note that if we continuously pump energy into our system, for example
because we deform it externally, then Eq. (4.7) acquires a non-zero source
term, S > 0. Assuming S is constant over time, the final temperature is
shifted to T0

′ = T0+Sτ . This temperature offset gets smaller with increasing
coupling strength 1/τ .
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Chapter 5

Embedded-atom method
potentials

Context: Here, we introduce a more complex interatomic potential that
is suitable for modeling metals, the embedded atom method potential. It
belongs to the class of many-body interatomic potentials and can be used
to model mechanical or thermodynamic properties of metals.

Additional resources:

• Chapter 5 of Interatomic potentials: Achievements and challenges

5.1 Introduction

Metals are often cubic crystals with anisotropic mechanical properties. Crys-
tals with cubic symmetry have three independent elastic constants, C11, C12

and C44 that roughly describe the resistance to volume change, dilational
shear and simple shear. The original driving force behind the development
of the embedded atom method (EAM) was to overcome the zero Cauchy
pressure PC = (C12 − C44)/2 for solids obtained for pair potentials: Pair
potentials always satisfy the Cauchy relation C12 = C44, hence there are
only two independent elastic constants for cubic solids. [Compare: For an
isotropic solid there are also two independent elastic constants, but this
condition is different, bulk modulus K = (C11 + 2C12)/3 and shear modulus
G = C44 = (C11 − C12)/2.] The Cauchy relation can be relaxed by adding an
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energy term that depends on the volume per atom v = V/N (Vitek, 1996)

E({r⃗i}) =
1

2

N∑
i=1

N∑
j=1

V (rij) +NU(V/N) (5.1)

The volume dependent term contributes only to deformation modes that do
not conserve the volume, i.e. C11 or C12. Hence, this breaks the Cauchy
relationship C12 = C44 and gives a non-zero Cauchy-pressure PC = (C12 −
C44)/2

While a potential of the type given by Eq. (5.1) can be adjusted to give
the correct elastic constant (and can therefore be accurate), it cannot be used
for e.g. free surfaces (and is therefore not transferable). This has historically
driven the development of more advanced methods for modeling solids such
as the EAM described here. Note that EAM potentials are not confined to
the realm of solids but can also be used for studying properties of melt, or
the transition between solid and melt.

5.2 Functional form

The EAM is based on the assumption that the energy of an impurity in a host
crystal lattice is a functional of the overall electron density ρ(r⃗) (that leads
to an attraction), plus some form of repulsion (i.e. due to Pauli exclusion).
This can be written as Epot = F

[
ρ(r⃗)

]
+ ϕ, where F is called the embedding

functional that tells us the relationship between energy and electron density
and ϕ some repulsive interaction.

We view each individual atom in the system as an impurity in the host
consisting of all other atoms (Daw and Baskes, 1983). F is then approximated
by a function that depends on the local electron density ρi at atom i:

Epot({r⃗i}) =
∑
i

F(ρi) +
1

2

∑
i,j

ϕ(rij) (5.2)

Note the first sum is over atoms, not pairs, and the second term is a simple
pair interaction. The missing ingredient is now the local electron density ρi,
which we approximate from the local density of the nuclei. This assumes that
each atom in the vicinity of atom i contributes a certain number of electrons
to the position of atom i.

The embedding function F(ρ) is negative and (typically) decreases mono-
tonically with increasing density. The more closely a structure is packed the
lower the energy. The repulsive term that is physically due to electrostatic
and Pauli repulsion then stabilizes the structure. This is balance between
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attractive and repulsive contribution a common feature of most interatomic
potentials, and we have already seen it for the Lennard-Jones potential.

The local density of the atomic system is easily computed from

ρi =
∑
j

f(rij) (5.3)

If f(r) is a step function that drops to zero at a distance rc then ρi becomes
the coordination number, i.e. the number of atoms within a sphere of radius
rc. By normalizing the step function with the volume of the sphere, it
becomes clear that ρi is some measure of the average atomic density within
a distance rc from atom i. However, a step function is not differentiable,
and therefore needs to be regularized. With appropriate regularization, all
distance dependent functions then smoothly transition to zero at a distance
rc (the cutoff). This makes the whole functional form differentiable at least
once.

Examples of early EAMs are ?, Gupta (1981), Finnis and Sinclair (1984)
and Cleri and Rosato (1993). They all employ the specific functional forms

F (ρ) = −A
√
ρ (5.4)

f
(
rij
)
= e−2q(rij−r0) (5.5)

V
(
rij
)
= Be−p(rij−r0) (5.6)

where A, B, q, p and R0 are parameters. For example, Cleri and Rosato
(1993) give parameters for the elements Ni, Cu, Rh, Pd, Ag, Ir, Pt, Au,
Al, Pb, Ti, Zr, Co, Cd, Zn and Mg. Note that the cutoff radius rc in most
potentials based on the embedded-atom approach reaches out to second
nearest neighbors or further, e.g. to fifth nearest neighbor for fcc metals
in the Cleri and Rosato (1993) potential. These potentials do not describe
fundamental forces of nature but they must be parametrized for a specific
material. The parametrization also includes choice of cutoff radius rc.

5.3 Parameterization

There exist different strategies to actually determine the parameters of a
potential. Cleri and Rosato (1993), as an example, have five parameters and
they fit the potential directly to experimental values of the cohesive energy,
lattice constant and the three cubic elastic constants.

Some authors adjust either the embedding function or repulsive pair po-
tential to reproduce the universal equation of state (see Ferrante et al. (1983);
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Rose et al. (1984)). For example, Foiles et al. (1986) obtain f(rij) from the elec-
tron density of free atom calculations, and assume the pair repulsion is entirely
electrostatic, V

(
rij
)
= Zi

(
rij
)
Zj(rij)/rij (with atomic charges Zi actually

depending on the distance between atoms, Z
(
rij
)
= Z0 (1 + βRν) exp (−αrij)

where Z0, β, ν and α are parameters). The embedding function F (ρ) is then
adjusted to reproduce the universal equation of state. Note that Foiles et al.
(1986) have more parameters in their model than Cleri and Rosato (1993)!

A more modern approach is force matching due to Ercolessi and Adams
(1994). Force matching potentials are fit to a set of calculations carried out
with a more accurate and more transferable but also more expensive method
(e.g. a quantum chemical method) at finite temperature. This generates a
molecular dynamics trajectory that has configurations with nonzero forces on
each atom. (Fitting to equilibrium properties such as Cleri–Rosato means
fitting to structures where all forces are zero.) The potential parameters
are then fit to reproduce these forces. This method has the advantage that,
in principle, an unlimited set of fitting targets can be generated easily and
the potential can be fit to a large number of parameters. An example of a
force-matched EAM is Grochola et al. (2005). It has no fixed functional form,
but splines are used to represent the three functions F(ρ), f(r) and V (rij).
Figure 5.1 shows these functions for the Grochola et al. (2005) potential.

Note: While early EAM potentials had a purely attractive embedding
contribution F(ρ) and a purely repulsive pair contribution ϕ(r), this
condition is relaxed in more complex potential. As can be seen from
Fig. 5.1, Grochola et al. (2005)’s potential includes a repulsive contribution
from the embedding term.

Note: These two approaches, fitting to experimental ground-state data
and force-matching, are quite different from a philosophical point of view.
It has been argued by Sukhomlinov and Müser (2016), that the potential
should contains as few parameters as possible (Occam’s razor!) to achieve
best transferability. Potential with many parameters are often accurate
for the fitting data set but not accurate outside and hence not transferable.
This problem is typically referred to as overfitting.
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Figure 5.1: F(ρ), f(r) and V (rij) as employed in the Au potential by Grochola
et al. (2005).
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5.4 Forces

From the total energy expression we can straightforwardly derive forces,
f⃗k = −∂E/∂r⃗k, leading to

f⃗k = −
∑
i

∂F (ρi)

∂ρi

∂ρi
∂r⃗k

− 1

2

∑
i,j

∂V

∂rij

∂rij
∂r⃗ij

(5.7)

= −
∑
i

∂F (ρi)

∂ρi

∑
j

∂f

∂rij

∂rij
∂r⃗k

− 1

2

∑
i,j

∂V

∂rij

∂rij
∂r⃗k

(5.8)

Note that ∂rij/∂r⃗k =
(
δik − δjk

)
r̂ij. Hence

f⃗k = −
∑
i

∂F (ρi)

∂ρi

∑
j

∂f

∂rij

(
δik − δjk

)
r̂ij −

1

2

∑
i,j

∂V

∂rij

(
δik − δjk

)
r̂ij (5.9)

= −
∑
i

(
∂F (ρk)

∂ρk

∂f

∂rki
r̂ki −

∂F (ρi)

∂ρi

∂f

∂rik
r̂ik

)
− 1

2

∑
i

(
∂V

∂rki
r̂ki −

∂V

∂rik
r̂ik

)
(5.10)

Using r̂ik = −r̂ki gives

f⃗k =
∑
i

(
∂F (ρk)

∂ρk
+

∂F (ρi)

∂ρi

)
∂f

∂rik
r̂ik +

∑
i

∂V

∂rik
r̂ik (5.11)

Energies and forces are typically implemented analytically in a molecular
dynamics code. Derivation (and correct implementation) of the force can be
tedious for complicated potential expressions!
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Chapter 6

Parallel computers and the
Message Passing Interface

Context: This chapter sets the stage for discussing parallelization of
the molecular dynamics simulation method introduced in the previous
chapters. We first need to talk about parallel hardware architectures
and how to program for them. The specific programming model that we
will employ is known under the term Single Program Multiple Data. The
Message Passing Interface (MPI) is a library that facilitates programming
for massively parallel machines under this programming model.

6.1 Parallel hardware architectures

Parallel hardware has become ubiquitous over the past decade. Most central
processing units (CPUs) in computers, phones or other hardware have multiple
cores that can execute instructions in parallel. Massively parallel computing
systems combine multiple CPUs into nodes that share a common memory.
These nodes are then combined into the full compute system through a
network interconnect.

Parallel architecture are often hierachical and have parallelization at
different levels. Notable is vectorization at the core-level, share memory par-
allelization for multicore architectures and distributed memory parallelization
for large computing systems that communicate via an interconnect (a network
connection).
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6.2 Scaling consideration

Software that runs on parallel computers needs to scale. Scaling describes how
the time to returning the result changes as the number of available compute
units (cores) changes. The simplest model for scaling assumes that our code
can be divided into a fraction fs that needs to be executed on a single core
while a fraction fp scales perfectly, i.e. its execute time is ∝ 1/p where p is
the number of available processes or cores. (Note that fs + fp = 1 since they
are fractions.) This leads to Amdahl’s law that describes the speedup S as a
function of p:

S = pfp + fsp (6.1)

6.3 Programming model

The Message Passing Interface (MPI) is an application programming interface
(API) for distributed memory parallelization. (A code parallelized with MPI
also works on shared memory machines!) The programming model underlying
MPI is called single program multiple data (SPMD): The identical program
is executed multiple times but operates on different datums.

6.3.1 Example: Monte-Carlo estimate of the number π

As the simplest example of a parallelization, we consider a Monte-Carlo
estimate of the number π.
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Chapter 7

Domain decomposition

Context: Parallelization in molecular dynamics typically occurs through
domain decomposition. The simulation domain is divided into subdomains,
each of which runs within an MPI process. This distributes the workload
among different compute units. Communications occurs only at the
interface of the subdomain, either to exchange atoms between subdomains
or to communicate ghost atoms that are required for the computation of
correct forces in short-range interatomic potentials.

7.1 Simulation domain

Our atomic system has so far lived in an infinite space consisting of vaccum.
We have made no reference to a simulation domain and the code developed
up to Milestone 07 makes not reference to such a domain. We now introduce
domain decomposition and for this need a simulation domain, i.e. a region of
space Ω in which our atoms can reside. This domain can be periodic, which
we will discuss in more detail in the next chapter.

We will assume that the simulation has its origin at (0, 0, 0) and is spanned
by three linearly independent vectors a⃗1, a⃗2 and a⃗3. Any atomic position can
then be expressed as

r⃗i = si,1a⃗1 + si,2a⃗2 + s3a⃗i,3 (7.1)

with sα ∈ [0, 1). sα must remain in this interval since we do not allow atoms
outside of the simulation domain. The vector s⃗i is the scaled position of the
atom i. Using the domain matrix h = (⃗a1, a⃗2, a⃗3), we can express this more
compactly as r⃗i = h · s⃗i. Conversely, we obtain the scaled positions from
s⃗i = h−1 · r⃗i.
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In what follows, we assume rectilinear domains, i.e. a⃗1 = (Lx, 0, 0),
a⃗2 = (0, Ly, 0) and a⃗3 = (0, 0, Lz) where Lx, Ly and Lz are the linear dimen-
sions of the domain. The methods that are described in the following are
straightforwardly extended to arbitrary (tilted) domains.

7.2 Decomposition into Cartesian domains

We decompose the full system into Nx×Ny×Nz subdomains. For a rectilinear
domain, this means teach subdomain has linear dimensions of Lx/Nx, Ly/Ny

and Lz/Nz. Each subdomain propagates its own atoms. When atoms leave
the subdomain, they are transferred to the respective neighboring domain.
We call this process atom exchange.

Domain decomposition algorithms for MD simulations have started to
appear in the literature around 1990. Some of the earliest references to this
type of algorithm are Brugè and Fornili (1990); Liem et al. (1991); Chynoweth
et al. (1991); Pinches et al. (1991); Brown et al. (1993); Plimpton (1995).

7.3 Ghost atoms

The atoms within each subdomain are not sufficient to compute the forces
upon these atoms. In order to compute forces for atoms near the domain
boundary, we need to transfer atoms that sit outside of the subdomain from
the neighboring subdomains. These atoms are called ghost atoms. All atoms
up to a distance rG from the subdomain boundary are transferred. For a
Lennard-Jones potential, rG = rc but for the EAM potential discussed here
rG = 2rc. This is because a force in the EAM potential is affected by an atom
that sits twice the cutoff radius rc away.

7.4 Communication pattern

The basic communication pattern involves two MPI_Sendrecv commands per
Cartesian direction. The atoms that are send (either exchanged or as ghost
atoms) must be serialized into a send buffer. Given that serialization has
occured into the buffers send_left and send_right, the communication
pattern looks as follows:

1 MPI_Sendrecv (&send_left , left_ , &recv_right , right_ , comm_)};

2 MPI_Sendrecv (& send_right , right_ , &recv_left , left_ , comm_)};

Here comm_ contains the MPI communicator and left_ and right_ the
MPI ranks of the processes that host the subdomain to the left and the
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right, respectively, of the current subdomain. The buffers recv_left and
recv_right hold the serialized atomic information received from the left
and right, respectively. This information needs to be deserialized into the
respective atom data type.
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Chapter 8

Periodicity and pressure

Context: Now that we have introduced the notion of the simulation
domain, we can introduce periodicity. In a periodic domain, atoms on the
right interact with atoms on the left. Periodic domains are commonly
used to represent bulk solid or fluid materials and eliminate the effect of
interfaces or surfaces. They are sometimes referred to as representative
volume elements (RVEs). The state of the RVE depends on its volume
(or the full domain matrix) and we can introduce the conjugate variable,
the pressure (or stress tensor).

8.1 Periodicity

All energy expressions here are written as Epot({r⃗i}). If there is no periodic
interaction across the domain boundaries, the energies depends on positions
only. For periodic interactions, they depend explicity on the domain vectors
a⃗1, a⃗2 and a⃗3 or the corresponding matrix h: Epot = Epot(h; {s⃗i}), where we
have expressed the positions in the respective scaled coordinates.

Periodicity is implicitly contained in the way the potential is written. E.g.
for a pair potential,

Epot({r⃗i}) =
1

2

N∑
i=1

N∑
j=1

ϕ(rij) =
∑
i<j

ϕ(rij), (8.1)

the energy depends only on relative positions r⃗ij . This distance vector contains
the information of the simulation domain implicitly. All potential energy
expressions must be a function of relative positions, never of absolute positions,
since this would violate momentum conservation (Newton’s second law). (This
is only true in the absence of external field, such as gravity of magnetic fields,
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that break this symmetry.) Note that in terms of the matrix h and the scaled
positions, the potential energy becomes

Epot(h; {s⃗i}) =
∑
i<j

ϕ(|h · s⃗ij|), (8.2)

where s⃗ij = s⃗i − s⃗j is the scaled distance between the atoms i and j.

8.2 Ghost atoms

There are different ways to realize periodic domains in MD simulation codes.
A common way is to incorporate periodicity into the neighbor list, which is
then build to include neighbors across domain boundaries with the correct
distance vector r⃗ij. The potential energy of the system is then given by
Eq. (8.1).

An alternative is to construct a supercell of the domain, i.e. replicate
the domain such that the repeating periodic image is explicitly present. In
practice, this is equivalent to creating a region of ghost atoms around the
domain and this is naturally incorporated into the portion of the code handling
the domain decomposition (that was described in the previous chapter). In
this case, the potential energy is given by

Epot({r⃗i}) =
1

2

N∑
i=1

N+NG∑
j=1

ϕ(rij), (8.3)

where it is important to realize that the sum over i runs over all atoms in
the domain, while the sum over j runs over the N domain atoms as well as
the NG ghost atoms with index j ∈ [N + 1, NG]. This strategy is for example
found in the widely used MD code LAMMPS (Plimpton, 1995; Thompson
et al., 2022).

8.3 Pressure and stress

For a periodic domain (an RVE) we can ask what the pressure of the system
is. From a thermodynamic perspective, the (potential energy contribution to
the) pressure is given by

P = −∂Epot

∂V
, (8.4)

where V = deth is the volume of the domain. This expression is only valid
at zero temperature; at finite temperature we need to use the free energy A

38



rather than the potential energy Epot and this yields an additional kinetic
contribution to the pressure.

When working with solids, we are often interested in the full stress tensor
σ of the system rather than just the pressure, P = −trσ/3. Let us assume
our RVE undergoes a deformation. This means the domain matrix is taken
from h to h′ = F · h where F is called the deformation gradient. The Cauchy
stress is then given by

σ =
1

V

∂Epot(h; {s⃗i})
∂F

∣∣∣∣
F=1

, (8.5)

where the derivative with respect to the deformation gradient F is taken
component-wise. (Again, at finite temperature the relevant thermodynamic
potential is the free energy A.)

Evaluating the stress for Eq. (8.1) yields

σ =
1

V

∑
i<j

∂ϕ(|F · r⃗ij|)
∂F

∣∣∣∣
F=1

=
1

V

∑
i<j

∂ϕ

∂rij
r⃗ij ⊗ r⃗ij (8.6)

where ⊗ is the outer product, [⃗a⊗ b⃗]ij = aibj. We can write this as

σ =
1

V

∑
i<j

r⃗ij ⊗ f⃗ij (8.7)

where f⃗ij is the force between atoms i and j. Equation Eq. (8.7) can be
directly used to compute the stress of a pair-potential in molecular dynamics.
An identical expression also holds for EAM potentials.
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Appendix A

Dynamical systems

A.1 Hamilton’s equations of motion

Newton’s equations of motion are limited to describing the motion of inde-
pendent point masses in Cartesian coordinates. A more general dynamical
postulate is Hamilton’s principle. It can be used to derive equations of mo-
tions for arbitrary dynamical variables (e.g. the angle of a pendulum, or
in the context of molecular dynamics the internal degrees of freedom of a
heat bath; this is useful when discussing constant-temperature molecular
dynamics). Hamilton’s principle is the postulate that the action S, an integral
quantity of the whole dynamics, has to be stationary. Newton’s equations of
motion are contained in this postulate, as will be shown below.

The action S for a system moving between time t1 and t2 is given by

S =

∫ t2

t1

dt L
(
{qi}, {q̇i}, t

)
(A.1)

where L = Ekin − Epot is called the Lagrangian.1 Hamilton’s principle now
states that the system will move along (generalized) coordinates {qi(t)} such
that the action S is stationary. This means the action does not vary for
infinitesimal deviations from this path, it is a maximum or minimum.

To determine this stationary path let us assume we have some path {qi(t)}
and infinitesimal variations {εi(t)} around that path. The change of the

1We are being sloppy here and it what follows. Ekin that enters the Lagrangian is
actually the kinetic coenergy (and not the kinetic energy). The coenergy transforms to
the kinetic energy in the Hamiltonian. We can be sloppy because there is no distinction
between the energy and coenergy for non-relativistic systems.
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action functional would then be

δS =

∫ t2

t1

dt
[
L
(
{qi + εi}, {q̇i + ε̇i}, t

)
− L

(
{qi}, {q̇i}, t

)]
=

∫ t2

t1

dt
∑
i

[
εi
∂L

∂qi
+ ε̇i

∂L

∂q̇i

]
.

(A.2)

Integration by parts yields

δS =
∑
i

[
εi
∂L

∂qi

]t2
t1

+

∫ t2

t1

dt
∑
i

εi

[
∂L

∂qi
− d

dt

∂L

∂q̇i

]
. (A.3)

The first part of Eq. (A.3) vanishes because εi (t1) = 0 and εi (t2) = 0 (by
definition; those are the start and endpoints of our path). Stationarity requires
δS = 0 for any εi. This leads to

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0, (A.4)

the Lagrange equation of motion.
Let us reiterate that stationarity of the action is a postulate. By the above

derivation, we showed that it is equivalent to the Lagrange equation of motion.
The equation of motion can be physically observed; the action itself cannot be
observed. An alternative derivation of the Lagrange equation of motion from
Newton’s equations of motion employs d’Alemberts principle. This derivation
is given in Section A.2.

Note: We will now need to compute the Legendre transform of the
Lagrangian. The Legendre transform of a function F (x) is defined as

F ∗(y) = min
x

[
xy − F (x)

]
. (A.5)

In what follows, we will assume that F (x) is differentiable. Then y(x) = dF
dx

and with this definition for y(x) and its inverse x(y) we have

F ∗(y) = x(y)y − F
(
x(y)

)
. (A.6)

It is instructive to write the total differential of Eq. (A.6),

dF ∗ = xdy + ydx− dF = xdy +
dF

dx
dx− dF = x(y)dy. (A.7)
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Noting that the total differential of the original function F is

dF =
dF

dx
dx = y(x)dx (A.8)

we immediately see that we have changed the independent variable from x
to y when going from F to F ∗. The same statement can be expressed as

F (x) =

∫
dF =

∫
y(x) dx (A.9)

F ∗(y) =

∫
dF ∗ =

∫
x(y) dy (A.10)

A common way of expressing the relationships above is

dF ∗

dy
=

(
dF

dx

)−1

(y). (A.11)

The derivatives of the Legendre transformation pairs are their respective
inverses.

Starting from the Lagrangian L, we define an additional state function,
the Hamiltonian

H({qi}, {pi}, t) = min
{q̇i}

∑
i

q̇ipi − L({qi}, {q̇i}, t)

 , (A.12)

from the Legendre transformation of q̇i to pi. The minimization in Eq. (A.12)
implies that the momenta pi are given by

pi =
∂L

∂q̇i
. (A.13)

Equation (A.13) constitutes the definition of what are called generalized
momenta. We insert this expression into Lagrange’s equation, Eq. (A.4), to
get

ṗi =
∂L

∂qi
. (A.14)

Furthermore, Eq. (A.12) becomes

H
(
{qi}, {pi}, t

)
=
∑
i

q̇ipi − L({qi}, {q̇i}, t), (A.15)
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and using L
(
{qi}, {q̇i}, t

)
= Ekin

(
{q̇i}

)
− Epot({qi}, t) we find pi = ∂Ekin

∂q̇i
.

Since Ekin

(
{pi}

)
is the Legendre transformation of Ekin

(
{q̇i}

)
,

H
(
{qi}, {pi}, t

)
= Ekin

(
{pi}

)
+ Epot

(
{qi}, t

)
. (A.16)

Using Eq. (2.33), the total differential of H is given by

dH =
∑
i

q̇i dpi +
∑
i

pidq̇i −
∑
i

∂L

∂qi
dqi −

∑
i

∂L

∂q̇i
dq̇i −

∂L

∂t
dt (A.17)

With the definition of the generalized momenta, Eq. (2.31), and their time
derivatives, Eq. (2.32), this becomes

dH =
∑
i

q̇i dpi −
∑
i

ṗi dqi −
∂L

∂t
dt. (A.18)

We can furthermore straightforwardly express the total differential ofH
(
{qi}, {pi}, t

)
by

dH =
∑
i

∂H

∂pi
dpi +

∑
i

∂H

∂qi
dqi +

∂H

∂t
dt. (A.19)

Comparison of Eqs. (2.36) and (2.37) yields

q̇i =
∂H

∂pi
(A.20)

ṗi = −∂H

∂qi
(A.21)

−∂L

∂t
=

∂H

∂t
(A.22)

Equations (A.20) to (A.22) are called Hamilton’s equations of motion.
For our molecular systems (without thermostats), the Hamiltonian H is

just the total energy Etot of the system and not explicitly time-dependent.
The last Eq. (A.22) then vanishes and H becomes a conserved quantity.
Hamilton’s equations of motion are two coupled differential equations of first
order. They describe the motion of the system in the phase space spanned by
the generalized coordinates, Γ⃗ = {qi}, {pi}. In contrast, Lagrange’s equation
of motion is a single differential equation of second order.

A.2 D’Alembert’s principle

A.2.1 Constraints and generalized coordinates

An alternative derivation of the Lagrange equations of motion is by explicitly
considering constraints. Constraints are sometimes used to approximate some
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or all interactions in a molecular dynamics calculation. Consider for example
a hydrocarbon molecule whose fastest vibrational motion typically occurs at
C-H and C-C bonds. One often approximates C-H and C-C bonds as being
rigid, i.e. fixing their length. This allows to choose larger time steps for the
integration algorithm.

As another example, consider an extended solid body. While the atoms
within this body interact via some interaction law, for extended macroscopic
objects this motion manifests itself in the elastic deformation of a solid body.
It is often desirable to ignore the fact that bodies can deform elastically and
model them as rigid bodies. Effectively, all atoms inside this body are then
constrained at a certain distance from each other.

We distinguish two types of constraints. Holonomic constraints can be
expressed in the form

ϕ (r⃗1, r⃗2, r⃗3, . . . , t) = 0. (A.23)

For example, fixing the distance between particle i and particle j to cij can

be expressed as
(
r⃗i − r⃗j

)2 − c2ij = 0.
If k holonomic constraints are present, this decreases the total number

of degrees of freedom of our N -particle system from 3N to 3N − k. In
other words, we can use the k expressions of type Eq. (2.1) to eliminate the
dependency on k of the initial Cartesian degrees of freedom. This elimination
can also be expressed by the introduction of 3N − k independent variables
q1, q2, . . . , q3N−k called generalized coordinates. We can always express the
Cartesian degrees of freedom as a function of these generalized coordinates,
i.e.

r⃗1 = r⃗1 (q1, q2, . . . , q3N−k, t) (A.24)

As a simple example, consider a pendulum where a bead is moving at the end
of a stick of length a in a two-dimensional plane. The motion the bead can
be expressed by two Cartesian coordinates, x (t) and y (t) with the additional
constraints x2 + y2 = a2. However, we already know that the only coordinate
that changes during the motion of the bead is its angle θ (t), which the
becomes the generalized coordinate. The Cartesian coordinates are then
straightforwardly expressed as x (t) = a cos θ (t) and y (t) = a sin θ (t).

Constraints that cannot be expressed in the way described above are called
nonholonomic. An example would be the wall of a cylinder that cannot be
passed by particles inside. This constrained could be expressed as r2i −a2 ≤ 0,
where a is the radius of the cylinder. Another example is a cylinder of radius
a rolling on a surface. If the center of the cylinder is a position r⃗, then the
distance to the surface cannot become larger than its radius a.

For nonholonomic constraints, we cannot remove a degree of freedom from
the description of the problem. Therefore, no general formal solution, such as
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the introduction of generalized coordinates for holonomic constraints, exists
for the imposition of nonholonomic constraints.

A.2.2 D’Alembert’s principle

The existence of a constraint implies that there is a constraint force that acts
implicitly to fulfill that constraint. We decompose the force on particle i into
applied force, F⃗ a

i , and constraint force, F⃗i,

F⃗i = F⃗ a
i + F⃗i. (A.25)

We now consider virtual displacements δr⃗i of our particles. Virtual dis-
placements are displacements carried out at some instant in time t under the
conditions valid at that instant; i.e. we ignore the fact that during a time
interval dt forces and constraints can change.

The virtual work is carried out by the virtual displacements is given by

δWs =
∑
i

F⃗i · δr⃗i =
∑
i

F⃗ a
i · δr⃗i +

∑
i

f⃗i · δr⃗i. (A.26)

Note that in (static) equilibrium F⃗i = 0 and hence the virtual work vanishes,
δWs = 0.

We now consider systems for which the net virtual work of the forces
of constraint,

∑
i f⃗i · δr⃗i ,is zero. This means the virtual displacements are

perpendicular to the constraint forces. For equilibrium we then have,

δWs =
∑
i

F⃗ a
i · δr⃗i = 0 (A.27)

Equation (A.27) is called the principle of virtual work, but it only describes
equilibrium for static systems.

The corresponding principle for dynamical systems goes back to James
Bernoulli and was further developed by Jean le Rond D’Alembert. Newton’s
equation of motion can be written as

F⃗i − ˙⃗pi = 0. (A.28)

The condition for dynamic equilibrium can then be case into the virtual work
formulation,

δWd =
∑
i

(
F⃗i − ˙⃗pi

)
· δr⃗i = 0, (A.29)

or when again considering only virtual displacements perpendicular to the
constraint forces,

δWd =
∑
i

(
F⃗ a
i − ˙⃗pi

)
· δr⃗i = 0. (A.30)
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Equation (A.30) is often referred to as D’Alemberts principle. In what follows,
we will drop the superscript a for brevity.

We now introduce generalized coordinates. Virtual displacements in the
Cartesian coordinates can then be expressed as

δr⃗i =
∂r⃗i
∂qi

δqi, (A.31)

and hence the virtual work becomes

δWs =
∑
i

F⃗i · δr⃗i =
∑
ij

F⃗i ·
∂r⃗i
∂qj

δqj =
∑
j

Qjδqj = 0. (A.32)

The Qj’s are called generalized forces.
The second contribution to D’Alembert’s principles, Eq. (2.8), is given by

δWs − δWd =
∑
i

˙⃗
ip · δr⃗i =

∑
i

mi
¨⃗
ir · δr⃗i =

∑
ij

mi
¨⃗
ir ·

∂r⃗i
∂qj

δqj, (A.33)

which can be expressed as

δWs − δWd =
∑
ij

mi

 d

dt

(
˙⃗
ir ·

∂r⃗i
∂qj

)
− ˙⃗

ir ·
d

dt

(
∂r⃗i
∂qj

) δqj. (A.34)

Note that
˙⃗
ir ≡

dr⃗i
dt

=
∑
j

∂r⃗i
∂qj

q̇j +
∂r⃗i
∂t

(A.35)

and hence
∂ ˙⃗

ir

∂q̇j
=

∂r⃗i
∂qj

. (A.36)

We can therefore rewrite Eq. (2.12) as

∑
ij

mi

 d

dt

(
v⃗i ·

∂v⃗i
∂q̇j

)
− v⃗i ·

∂v⃗i
∂qj

 δqj =
∑
ij

 d

dt

[
∂

∂q̇j

(
1

2
mv2i

)]
+

∂

∂qj

(
1

2
mv2i

) δqj.

(A.37)
Since T ∗ = 1

2
mv2i , D’Alembert’s principle becomes

δWd =
∑
j


 d

dt

(
∂T ∗

∂q̇j

)
− ∂T ∗

∂qj

−Qj

 δqj = 0 (A.38)
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Note that Eq. (2.13) must hold for all possible virtual displacements. The
individual δqj are not necessarily independent of each other for general
constraints. For holonomic constraints, however, we can find coordinates qj
that automatically fulfill the constrained, the generalized coordinates. If this
is the case, then we can vary each δqj independently and the constraints are
still fulfilled; Eq. (2.15) must hence be fulfilled independently for each of the
summands.

If all constraints are implicitly contained in the set of generalized coordi-
nates, then  d

dt

(
∂T ∗

∂q̇j

)
− ∂T ∗

∂qj

−Qj = 0. (A.39)

Note that if the forces can be derived from a potential, F⃗i = −∂V
∂r⃗i

, then

Qj =
∑
i

F⃗i ·
∂r⃗i
∂qj

= −
∑
i

∂V

∂r⃗i
· ∂r⃗i
∂qj

= −∂V

∂qj
(A.40)

and Eq. (2.16) can be written as d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj

 = 0 (A.41)

with L = T ∗ − V . The function L is called the Lagrangian and Eq. (2.18) is
called the Euler-Lagrange equation or just the Lagrange equation.

Just like the kinetic energy and the potential energy, the Lagrangian
is a state function. The generalized coordinates qi do not need to have
units of length and generalized forces Qi do not need to have units of force,
but the work Qiδqi must have units of energy (work). The utility of the
Euler-Lagrange equation is that we get the equations of motion for the
generalized coordinates without the need to transform into these coordinates
via something like Eq. (2.13). It is important to realize that this is only
valid if the potential U is independent of velocity. A notable difference are
electromagnetic forces, see Goldstein chapter 1-5. Because Eq. (2.14) contains
terms v⃗i · dv⃗i we get the kinetic coenergy T ∗ rather than the kinetic energy T .
Goldstein does not make this distinction but Williams does. Non-conservative
forces simply remain as generalized forces in the Euler-Lagrange equation, d

dr

(
∂L

∂q̇j

)
− ∂L

∂qj

 = Qnc
j (A.42)

where Qnc
j is the non-conservative contribution to the generalized force.
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Appendix B

Phase space, statistics and
thermodynamics

Statistical mechanics describes a physical system given we know little about
its microscopic details. At a first glance, this appears the converse of what
we do in molecular dynamics. In molecular dynamics calculations, we have
to specify an initial condition, the positions r⃗i and momenta p⃗i (this chapter
will use momenta p⃗i = miv⃗i instead of velocities v⃗i). These initial conditions
define the state of the system exactly, which means we know everything there
is to know about our molecular system. Note that a single state, as specified
by {r⃗i, p⃗i} is also called a microstate in the context of statistical mechanics.
All microscopic degrees of freedom are specified for a microstate.

In most practical situations, we usually don’t have information to this
level of detail, and in most cases the results don’t depend on the details of
the microstate. In MD calculations, we have to initially guess what a good
representative microstate could be. This means while we do know exactly
what our microstate is, we don’t really know how representative this would be
for the real, physical situation that we want to describe with our calculation.
Note that the momenta (velocities) are usually picked randomly because we
really don’t know these quantities. However, we do know their statistical
distribution. Obtaining this distribution is one of the objectives of statistical
mechanics and is discussed in detail below.

Another goal of statistical mechanics is to compute the functional depen-
dence of macroscopic properties, for example the dependence of pressure on
volume, P (V ), or the lattice constant of a crystal as a function of temperature,
a(T ). Macroscopic properties are expressed as averages over all microstates,
weighted by the probability with which they occur. The goal is therefore to
reduce the number of degrees of freedom from NA ∼ 1024 to a few. This is
sometime referred to as coarse-graining.
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Note that we have computed P (V ) for a solid in the previous chapter.
This was possible because the calculation was carried out at a temperature
of zero. Then, there is no thermal motion and for a single crystal we know
the positions (and velocities, they are zeor) of all atoms exactly. Hence
there is only a single microstate and we can carry out the calculation by just
considering this state without averaging. In most cases, however, we need to
compute averages. We will start our discussion of statistical mechanics with
details on how averages are carried out.

B.1 Phase space and phase space averages

The positions r⃗i and momenta p⃗i of all atoms define a microstate. This
microstate is typically characterized by a 6N (in 3D) dimensional vector Γ⃗

that defines a point in phase space. Imagine we now have an observable O(Γ⃗).
The observable gives a certain property as a function of the point in phase
space, i.e. as a function of the positions and momenta of all atoms. We have
already encountered three such “observables”, the potential energy Epot, the
kinetic energy Ekin and the total energy H = Ekin+Epot. Other examples are
the lattice constant a of a crystal, for example as obtained from scattering
experiments or from averaging over the individual bond-lengths of our crystal.
Note that the potential energy and lattice constant depend on just position
and the kinetic energy on just velocities, so each is constant in large portions
of the full phase space.

A phase space average is now obtained from a simple integral over all
possible configurations, weighted with the probability of their occurrence,
ρ(Γ⃗). The function ρ(Γ⃗) is called the phase space density. Since it is a

probability density, it needs to be normalized,
∫
d6NΓρ(Γ⃗) = 1. Averages ⟨·⟩

are obtained by

⟨O⟩ =
∫

d6NΓρ(Γ⃗)O(Γ⃗)

=

∫
d3p1d

3r1...d
3pNd

3rN ρ({r⃗i}, {p⃗i})O({r⃗i}, {p⃗i}) (B.1)

and are called ensemble averages. From the knowledge of the full phase space
density, we can also compute the variance of fluctuations of this quantity
around the average,

⟨∆O2⟩ = ⟨O2⟩ − ⟨O⟩2 (B.2)

which are a measure for the uncertainty of the quantity. The trick is now to
choose the phase space density ρ(Γ⃗) properly.
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B.2 Few microstates

For illustrative purposes, we will start by discussing the phase-space density
for just a few microstates. We can express just a single microstate – let us
call it A with positions r⃗Ai (t) and momenta p⃗Ai (t) – in this density:

ρ({r⃗i}; {p⃗i}; t) =
∏
i

δ(r⃗i − r⃗Ai (t))δ(p⃗i − p⃗Ai (t)) (B.3)

Since
∫
dx δ(x − x0)f(x) = f(x0), or rather

∫
dx δ(x − x0) = 1 we have∫

d6NΓρ(Γ⃗) = 1, i.e. the phase space density is a density. Of course, this
constructed example does not really express any probability since we have
just one microstate. Note that this phase space “density” depends on time t
explicitly since the microstate evolves according to Hamilton’s equations of
motion!

As the simplest example of how probabilities emerge in the phase space
density, let us consider the (probabilistic) combination of two microstates.
Let us call the second state B, then

ρ({r⃗i}; {p⃗i}; t) =wA

∏
i

δ(r⃗i − r⃗Ai (t))δ(p⃗i − p⃗Ai (t))

+ wB

∏
i

δ(r⃗i − r⃗Bi (t))δ(p⃗i − p⃗Bi (t)),
(B.4)

where wA and wB are the statistical weights of each of these states. For
example, if wA = wB = 1/2 then both states will occur with the same
probability. Note that wA + wB = 1 to ensure normalization of ρ. Note that
ρ still depends explicitly on time t.

Rather than using two states, we are in most practical situations interested
in an infinite number of states. We are also typically interested in equilibrium.
By definition, equilibrium is a steady state and hence the time dependence
disappears. Therefore, for all cases discussed in the following ρ will be
independent of t.

B.3 The microcanonical ensemble, equal a-

priori probabilities and entropy

Equation (B.4) is the simplest example of an ensemble of microstates, in this
case the two states A and B that we explicitly specified. Rather than explicitly
expressing the microstates through their positions and momenta, we can also
ask what the ensemble of state is that belongs to a certain (macroscopic)
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observable. This ensemble consists of all states that are compatible with this
observable. The simplest one is the ensemble of microstates belonging to a
certain value of the total energy (or Hamiltonian) H, which is a conserved
quantity of the microscopic motion. This ensemble is called the microcanonical
or sometimes the NVE (for constant particle number N , constant volume V
and constant energy E) ensemble.

This microcanonical ensemble is a statistical average over all states with
the same total energy E, i.e. ρ = ρ(Γ⃗;E) is a function of the energy E. We

know that all microstates Γ⃗ that have total energy E must fulfill H(Γ⃗) = E.
How do we now assign probabilities to each of these microstates that fulfill
H(Γ⃗) = E? Since we do not know anything about the specific state, we must
assume that all occur with identical probabilities. This is the fundamental
postulate of the microcanonical ensemble, the postulate of equal a-priori
probabilities. We assume that all possible states are equally likely, because
we don’t have any information about them, except for the their total energy
E. The phase-space density is the given by

ρeq(Γ⃗;E) =

{
1/Ω(E), if H(Γ⃗) = E

0, else
, (B.5)

where Ω(E) is called the phase space volume. The (constant) factor 1/Ω(E)
is necessary such that the density is normalized. Not that the phase space
volume just counts the number of available states,

Ω(E) =

∫
H(Γ⃗)=E

d6NΓ (B.6)

Note that the superscript eq in ρeq indicates that we are in equilibrium, i.e.
there is no time dependence left.

Equation (B.5) can be written alternatively as

ρeq(Γ⃗;E) =
1

Ω(E)
δ
(
H(Γ)− E

)
, (B.7)

where now the δ-function selects the surface of constant total energy E.
The superscript eq will be dropped in what follows, unless we want to
make explicitly clear the distinction between equilibrium and nonequilibrium
situations.

B.3.1 Entropy

A central concept in statistical mechanics is the entropy of a system. The
general (nonequilibrium) entropy quantifies the number of microstates for a
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given phase-space density. It is defined as

Snoneq[ρ] = −kB

∫
d6NΓρ ln(ρ), (B.8)

where kB is the Boltzmann constant. Note that the factor kB has the role to
turn temperatures from units of energy into units of K; this will be discussed
below. There is no fundamental physical reason to have kB in Eq. (B.8).
Equation (B.8) is called the Shannon entropy in information theoretical
contexts. Its construction is designed to have the following properties:

• The entropy is maximal for equal probabilities. We therefore find the
equilibrium of a system by maximizing it. The principle of equal a
priori probabilities is build into the entropy! This can be most easily
seen by using a discrete phase space density, i.e. a set of probabilities
ρα for a discrete state α. The nonequilibrium entropy is then given by

Snoneq =
∑
α

ρα ln(ρα) (B.9)

which we now maximize. It is important to realize that the probabilities
need to be normalized,

∑
α α = 1, and we hence need to maximize the

entropy under this normalization constraint. This can be achieved by
introducing a Lagrange multiplier λ and maximizing

Snoneq =
∑
α

ρα ln(ρα) + λ

(∑
α

α− 1

)
. (B.10)

This leads to the condition ln(ρα) + 1 + λ = 0 and hence ρα = const. A
similar derivation applies for the continuous case.

• The entropy is not affected by the number of states with zero probability.
All states with zero probably disappear from the integral/sum.

• The entropy is extensive, i.e. proportional to the size of the system.
Consider two separate isolated systems A and B that can exchange
neither energy nor particles and have individual entropies SA and SB.
Then the total entropy should be S = SA + SB. We can describe each
within their of phase space Γ⃗A and Γ⃗B. This means we can define two
independent phase space densities ρA(Γ⃗A) and ρB(Γ⃗B). The combined

system lives in the combined space Γ⃗ = (Γ⃗A, Γ⃗B) and since they are
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independent, we can just multiply the probability densities to give
ρ(Γ) = ρA(Γ⃗A) ρB(Γ⃗B). The combined entropy is the given by

S = −k

∫
d6NA+6NBΓρAρB ln(ρAρB)

= −k

∫
d6NAΓAd

6NBΓBρAρB(ln ρA + ln ρB)

= −k

∫
d6NBΓBρB

∫
d6NAΓAρA ln ρA − k

∫
d6NAΓAρA

∫
d6NBΓBρB ln ρB

= −k

∫
d6NAΓAρA ln ρA − k

∫
d6NBΓBρB ln ρB

= SA + SB

(B.11)

The equilibrium entropy for the microcanonical ensemble is

Seq(E) = −kB

∫
d6NΓρeq ln(ρeq) = kB lnΩ(E) (B.12)

These are equal probabilities! Equilibrium maximizes the entropy.
Note that in the microcanonical ensemble the macrostate is characterized

by the total energy E. In general, we can use any type of constraint, repre-
senting our knowledge about the system, as a macrostate. The entropy then
depends on the observer.

B.3.2 The ideal gas

The ideal gas is the simplest meaningful system that we can treat with these
statistical methods. It also turns out to be one of the few systems that can
be solved analytically. The Hamiltonian (total energy) of the ideal gas is

H({r⃗i}; {p⃗i}) =
∑
i

p⃗2i
2m

(B.13)

i.e. there is just kinetic energy. For the sake of simplicity, the positional
degrees of freedom r⃗i will be ignored in the following.

Let’s start by considering a few particles (or rather a few degrees of
freedom) of identical mass m. The statistics of the system will become useful
for many degrees of freedom, but some concepts can be easily discussed in
few dimensions. The phase space density for two degrees of freedom is

ρeq2 (p1, p2;E) = π−1δ(p21 + p22 − 2mE) (B.14)
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i.e. a circle. It is straightforward to see that this phase-space density is indeed
normalized,∫

dp1dp2ρ
eq
2 (p1, p2;E) = π−1

∫
dp1dp2δ(p

2
1 + p22 − 2mE) (B.15)

= 2

∫ ∞

0

dp pδ(p2 − 2mE) (B.16)

=

∫ ∞

0

dp (−δ(p+
√
2mE) + δ(p−

√
2mE)) (B.17)

= 1 (B.18)

where we have used the δ-function identity 2xδ(x2−a2) = −δ(x+a)+δ(x−a).
Having the combined probability density of both particles is usually not

very useful. A useful quantity is the probability of finding particle 1 in
momentum p1, irrespective of the state of particle two. This is a marginal
probability density which we will denote by f2(p1;E) and it is obtained by
integrating over all possible realizations of particle p2. It is given by

f2(p1;E) =

∫
dp2 ρ

eq
2 (p1, p2;E)

=

∫ ∞

−∞
dp2 π

−1δ(p21 + p22 − 2mE)

=
1

2π

∫ ∞

−∞
dp2

1√
2mE − p21

[
δ

(
p2 +

√
2mE − p21

)
+ δ

(
p2 −

√
2mE − p21

)]

=

{
0 if |p1| >

√
2mE

π−1(2mE − p21)
− 1

2 otherwise

(B.19)

where we have used δ(x2 − a2) = 1
2|a| [δ(x+ a) + δ(x− a)]. Note that f2(p1;E)

is normalized properly∫
dp1 f2(p1) =

1

π

∫ √
2mE

−
√
2mE

dp1
1√

2E − p21
=

1

π

∫ 1

−1

dx
1√

1− x2
= 1. (B.20)

This construction is not particularly useful for two degrees of freedom, but
it is for many degrees of freedom. The equilibrium phase space density for an
ideal gas of n degrees of freedom (usually n = 3N where N is the number of
particles) is

ρeqn ({pi};E) =
1

Ω(E)
δ

∑
i

p2i − 2mE

 (B.21)
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with

Ω(E) =
πn/2

Γ(n/2)
(2mE)n/2−1 (B.22)

being the total volume of the phase space. (Here Γ(x) is the Gamma function.)
This is the surface area of a sphere of radius

√
2mE in n dimensions and the

full expression is derived in Appendix B.7!
If we now integrate out all degrees of freedom p2...pN except for p1, we

get the marginal distribution function

fn(p1;E) =

∫
dp2 . . . dpn ρ

eq
n ({pi};E) =

Γ
(
n
2

)
/Γ
(
n
2
− 1

2

)
√
2πmE

(
1− p21

2mE

)n
2
− 3

2

(B.23)
For n = 2 this gives Eq. (B.19) and the full derivation of Eq. (B.23) is given
in Appendix B.8. For illustration purposes, let us look at the expressions for
n = 3, and n = 4. We find

f3(p1;E) =
1√
8mE

θ(p21 − 2mE) (B.24)

and

f4(p1;E) =
2

π

1√
2mE

√
1− p21

2mE
. (B.25)

It is straightforward to show (see Appendix B.9, that in the thermodynamic
limit N → ∞ (for a three dimensional space with n = 3N), Eq. (B.23)
becomes

f(p1;E) =
1√

2πm(2E/3(N − 1))
exp

(
− p21
2m

3(N − 1)

2E

)
(B.26)

Now E/(N − 1) is the kinetic energy per particle, i.e. 2E/3(N − 1) = kBT .
This is the probability distribution for each particle:

f(p1;T ) =
1√

2πmkBT
exp

(
− p21
2mkBT

)
(B.27)

The function f3(p1;E) simply constant over an interval of p1. f4 then peaks
at p1 = 0, i.e. finding a particle with zero velocity has a maximum likelihood.
The function the approaches a Gaussian in the thermodynamic limit n → ∞.
The progression of the marginal distribution with n is shown in Fig. B.1.

Note that the entropy for the marginal distribution function is given by

S(E) = −k

∫
dp1 f(p1;E) ln

(
f(p1;E)

)
(B.28)
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Figure B.1: Marginal distribution function for the momentum of a single
particle in the ideal gas model for different degrees of freedom.

The estimate Eq. (B.22) is not fully correct. First, it is missing the phase
space volume of the positional degrees of free r⃗i, but this integral is trivial to
carry out and yield just V N (where V is the volume).

The correct expression also needs to account for indistinguishability of
the particles and includes a factor h3NN ! (N ! is the number of possibilities
N particles can be permuted and h is the Planck constant). This factor is
called the Gibbs factor and has its origin in quantum statistical mechanics. It
can be thought of as describing the quantization of the phase space volume.
The correct number of states for the ideal gas is then

Ω(E) = V N

√
2πmE/h2

3N

N !(3N/2)!
(B.29)

B.4 The canonical ensemble

B.4.1 Temperature, pressure, chemical potential

Assume two isolated subsystems with energy EA and EB (total energy E =
EA + EB), volume VA and VB (total volume V = VA + VB) and particle
numbers NA and NB (total particle number N = NA + NB). All of these
quantities are extensive quantities, i.e. they scale with system size.

These systems occupy a phase space of volume ΩA(EA, VA, NA) etc. and
have entropies SA(EA, VA, NA). Now we let these systems exchange energy
∆E, volume ∆V and particles ∆N , we equilibrate them. Note that we loose
information when allowing these exchanges. Rather than knowing the Since
we don’t know the configuration of the joint system, let’s find the entropy by
maximizing it (remember, this is the equilibrium condition):

Seq
AB(E, V,N) = max

EA,VA,NA

Seq
A (EA, VA, NA) + Seq

B (E − EA, V − VA, N −NA)

(B.30)
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We find three equations that determine the equilibrium between the two
systems,

1

TA

=
1

TB

with
1

T
=

∂S

∂E
,
PA

TA

=
PB

TB

with
P

T
=

∂S

∂V

and
µA

TA

=
µB

TB

with
µA

TA

=
µA

TA

(B.31)

where we have identified temperature T , pressure p and chemical potential µ.
Taking the entropy for the ideal gas above, we find for the temperature of

the ideal gas
1

T
=

∂S

∂E
= k

∂

∂E
lnΩ(E) = k

3N

2E
(B.32)

i.e. kT = 2E/3N .

B.4.2 The heat bath

Imagine a system A in contact with a much larger system B, i.e. NA ≪ NB

and EA ≪ EB. Similarly to the ideal gas example above, we can integrate
out all degrees of freedom of system B. Indeed since B is just a heat bath,
we can simply assume that it is a heat bath that is an ideal gas. It is then
straightforward to show, that the marginal distribution function then becomes

f({rα}, {pα};T ) = PAρ
eq = Z(T )−1 exp

(
−H({rα}, {pα})

kT

)
(B.33)

with kT = 2
3
EB

NB
and the projection operator

PA· =
1

NA!

∫ ∏
α∈B

drαdpα (B.34)

The normalization factor Z(T ) is called the partition sum and has a similar
significance as the phase space volume Ω(E),

Z =

∫ ∏
α∈B

drαdpα exp

(
−H({rα}, {pα})

kT

)
(B.35)

An alternative (and simpler) derivation of the canonical distribution function
goes as follows. We know that in the microcanonical ensemble, the probability
f(EA) of finding subsystem A in with energy EA must be proportional to
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ΩB(E − EA)/Ω(E), i.e. the probability of finding system B with energy
E − EA. From Eq. (B.12) we can write this in terms of the entropy

f(EA) ∝ ΩB(E − EA) = exp

[
SB(E − EA)

k

]
≈ exp

[
1

k

(
SB(E)− ∂SB

∂E
EA

)] (B.36)

where ≈ holds for EA ≪ E. From Eq. (B.31) we can identify the derivative
of the entropy as the temperature and get,

f(EA) = Z(T )−1 exp

(
−EA

kT

)
(B.37)

The canonical ensemble makes it straightforward to see, that velocities should
always follow a Gaussian distribution. If we use the classical Hamiltonian

H({r⃗i}, {p⃗i}) =
∑

i
p⃗2i
2mi

+ Epot({r⃗i}), then

f(p⃗1) = Z−1 exp

(
− 1

kT

p⃗2i
2mi

)∫
d3r1 · · · d3rnd3p2 · · · d3pN

exp

− 1

kT

 N∑
i=1

p⃗2i
2mi

+ Epot({r⃗i})


 (B.38)

but the integral is just a constant.
We can estimate the expectation value of the temperature ⟨kBT ⟩ and its

fluctuations ⟨(kBT )2⟩ − ⟨kBT ⟩2 from a canonical ensemble average.

⟨kBT ⟩ =
∫ ∞

−∞
dp1

p21
2m

1√
2πmkBT

exp

(
− p21
2mkbT

)
= kBT (B.39)

⟨(kBT )2⟩ =
∫ ∞

−∞
dp1

p41
4m2

1√
2πmkBT

exp

(
− p21
2mkbT

)
= (kBT )

2 (B.40)

(B.41)

Hence ⟨(kBT )2⟩ − ⟨kBT ⟩2 = 0. The temperature does not fluctuate in the
canonical ensemble!

However the total energy does. We can estimate the energy fluctuations
from the ensemble averages ⟨H⟩ and ⟨H2⟩,

⟨H⟩ = 1

Z

∫ ∏
α∈B

drαdpαH({rα}, {pα}) exp
(
−βH({rα}, {pα})

)
(B.42)
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where we have abbreviated β = 1/kBT . We can now use a mathematical trick
to get ⟨H⟩. Since H exp(−βH) = − ∂

∂β
exp(−βH), we have

⟨H⟩ = − 1

Z

∂

∂β
Z = − ∂

∂β
lnZ (B.43)

and

∂2

∂β2
lnZ =

1

Z

∂2

∂β2
Z − 1

Z2

(
∂

∂β
Z

)2

= ⟨H⟩2 − ⟨H2⟩ ≠ 0 (B.44)

Hence energy fluctuates in the canonical ensemble.

B.5 The grand-canonical ensemble

The grand canonical ensemble allows exchange of particles in addition to
exchange of energy. A possible derivation follow along the line of the one
given above for the canonical ensemble, but allows for changes in number of
particles

f(EA, NA) =
1

Z
exp

(
−EA − µNA

kTB

)
(B.45)

Here Z is called the grand-canonical partition function and µ is the chemical
potential from Eq. (B.12).

B.6 Ergodicity

Ergodicity: “ The trajectory of almost every point in phase space passes
arbitrarily close to every other point on the surface of constant energy.” [1]
Note that two trajectories in phase space cannot cross, unless it is a periodic
orbit.

This implies: Time averages equal microcanonical ensemble averages

Ō = ⟨O⟩ (B.46)

where

Ō = lim
τ→∞

1

τ

∫ τ

0

dtO
(
Γ⃗ (t)

)
(B.47)

This means we can compute ensemble averages from molecular dynamics
trajectories, given our system is ergodic.

The statement Ō = ⟨O⟩ implies that we can get the distribution function

f(Γ⃗ ) that qualifies the ensemble from a dynamical run by computing the
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distribution during the time evolution, i.e. by treating each instant in time
as its own independent realization of the system. We can therefore use a
molecular dynamics run to compute f(Γ⃗ ). For example, the distribution
of momenta f(p1) is straightforwardly obtained even from single snapshots.
Since all particles are indistinguishable, we can just use the momenta of all
particles p⃗i as the random variables to construct f(p1).

B.7 Normalization of the n-dimensional phase-

space density

The normalization for n dimensions involves n-dimensional integrals. We
have

ρeq({pi};E) =
1

Ω(E)

∫
dnp δ

∑
i

p2i − 2mE

 , (B.48)

and, because of the normalization of the
∫
dn ρeq({pi};E) ≡ 1,

Ω(E) =

∫
dnp δ

∑
i

p2i
2m

− E


= Sn

∫ ∞

0

dp pn−1δ(p2 − 2mE)

= Sn

∫ ∞

0

dp
pn−1

2
√
2mE

(
δ(p+

√
2mE)− δ(p−

√
2mE)

)
=

1

2
Sn

√
2mE

n−2

(B.49)

Ω(E) is the volume of phase space occupied by the ideal gas at constant
energy E.

The prefactor Sn is the surface area of the unit sphere. We can find its
value by a simple trick that involves integrals over Gaussians. Consider the
following n-dimensional integral of a rotationally symmetric function, which
we can carry out directly (because the n-dimensional Gaussian factorizes and
the indefinite integral over a Gaussian can be carried out easily):

∫
dnx exp

−1

2

n∑
i=1

x2
i

 =

[∫ ∞

−∞
dx exp

(
−1

2
x2

)]n
= (2π)

n
2 (B.50)
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But using r =
∑

x2
i we can express this integral also as

∫
dnx exp

−1

2

n∑
i=1

x2
i

 = Sn

∫ ∞

0

dr rn−1 exp

(
−1

2
r2
)

= SnA(n) (B.51)

with A(n) =
∫∞
0

dr rn exp(−r2/2). The substitution t = r2/2 gives

A(n) = 2n/2−1

∫ ∞

0

dt tn/2−1 exp(−t) ≡ 2n/2−1Γ(n/2)

where Γ(x) is the Gamma function. Note that Γ(n) = (n− 1)! for integer n.
Hence we can equate Eq. (B.50) and (B.51) to get 2n/2−1Γ(n/2)Sn = (2π)n/2,
or

Sn =
2πn/2

Γ(n/2)
(B.52)

Note that this gives S2 = 2π (circle) and S3 = 4π (sphere).

We therefore find the final expression for the phase-space volume

Ω(E) =
πn/2

Γ(n/2)
(2mE)n/2−1 (B.53)
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B.8 Integrating out n− 1 degrees of freedom

We follow the above procedure, but integrate out n− 1 degrees of freedom.
This gives the marginal distribution for finding particle 1 with momentum p1,

fn(p1;E) =

∫
dp2 · · · dpnρeq({pi};E)

=
1

Ω(E)

∫
dn−1pδ

∑
i

p2i − 2mE


=

Sn−1

Ω(E)

∫
dp pn−2δ(p21 + p2 − 2mE)

=
Sn−1

Ω(E)

∫ ∞

0

dp
pn−2

2
√
2mE − p21

[
δ

(
p+

√
2mE − p21

)
+ δ

(
p−

√
2mE − p21

)]

=
1

2

Sn−1

Ω(E)

√
2mE − p21

n−3

=
Sn−1

Sn

√
2mE − p21

n−3

√
2mE

n−2

=
1√

2πmE

Γ(n
2
)

Γ
(
n
2
− 1

2

) (1− p21
2mE

)n
2
− 3

2

(B.54)

B.9 The thermodynamic limit: Integrating

out 3N → ∞ degrees of freedom

We have until now only considered n degrees of freedom. For N particles
moving in three dimensions, n = 3N . The limit of large particle numbers,
N → ∞, is called the thermodynamic limit. The marginal distribution
function for N particles is

f3N(p1;E) =
Γ
(
3N
2

)
/Γ
(
3N
2
− 1

2

)
√
2πmE

(
1− p21

2mE

) 3
2
(N−1)

(B.55)

WE now use the identity limn→∞(1 + x/n)n = ex and Γ
(
n
2

)
/Γ
(
n
2
− 1

2

)
≈√

(n− 3)/2 for large n to obtain (in the thermodynamic limit)

f(p1;E) =

√
3(N − 1)

4πmE
e−

p21
2m

3(n−1)
2E (B.56)
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Note that the total energy E is an extensive quantity, E → ∞ as N → ∞.
However, the only quantity that shows up in the Eq. (B.56) is E/(N − 1).
With the temperature 3kBT/2 = E/(N − 1), hence

f(p1;T ) =
1√

4πmkBT
e
− p21

2mkBT (B.57)

Note that 3kBT/2 = E/(N − 1) rather than 3kBT/2 = E/N because the
movement of the center of mass of all particles does not contribute to the
temperature.
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S. V. Sukhomlinov and M. H. Müser. Constraints on phase stability, defect
energies, and elastic constants of metals described by EAM-type potentials.
J. Phys.: Condens. Matter, 28(39):395701, 2016. URL https://doi.org/

10.1088/0953-8984/28/39/395701.

N. Tchipev, S. Seckler, M. Heinen, J. Vrabec, F. Gratl, M. Horsch,
M. Bernreuther, C. W. Glass, C. Niethammer, N. Hammer, B. Krischok,
M. Resch, D. Kranzlmüller, H. Hasse, H.-J. Bungartz, and P. Neumann.
TweTriS: Twenty trillion-atom simulation. Int. J. High Perform. Com-
put. Appl., 33(5):838–854, Sept. 2019. URL https://doi.org/10.1177/

1094342018819741.

A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M.
Brown, P. S. Crozier, P. J. in 't Veld, A. Kohlmeyer, S. G. Moore, T. D.
Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott, and S. J. Plimpton.
LAMMPS - a flexible simulation tool for particle-based materials modeling
at the atomic, meso, and continuum scales. Comput. Phys. Comm., 271:
108171, 2022. URL https://doi.org/10.1016/j.cpc.2021.108171.

V. Vitek. Pair potentials in atomistic computer simulations. MRS Bull., 21
(2):20–23, 1996. URL https://doi.org/10.1557/S088376940004625X.

66

https://doi.org/10.1103/PhysRevB.29.2963
https://doi.org/10.1088/0953-8984/28/39/395701
https://doi.org/10.1088/0953-8984/28/39/395701
https://doi.org/10.1177/1094342018819741
https://doi.org/10.1177/1094342018819741
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1557/S088376940004625X

	Introduction
	Structure of matter at the atomic scale
	Interatomic forces and the potential energy

	Molecular dynamics
	Equations of motion
	Newton's equations of motion
	Kinetic energy and energy conservation

	Integration algorithms
	Euler integration
	Leap-frog integration
	Verlet integration
	Velocity-Verlet integration


	Pair potentials
	Introduction
	Pair potentials
	Dispersion forces
	Lennard-Jones potential

	Short-ranged potentials
	Neighbor list search

	Temperature control
	Introduction
	Simple themostatting schemes
	Velocity rescaling
	Berendsen thermostat

	Equilibrating a molecular simulation

	Embedded-atom method potentials
	Introduction
	Functional form
	Parameterization
	Forces

	Parallel computers and the Message Passing Interface
	Parallel hardware architectures
	Scaling consideration
	Programming model
	Example: Monte-Carlo estimate of the number 


	Domain decomposition
	Simulation domain
	Decomposition into Cartesian domains
	Ghost atoms
	Communication pattern

	Periodicity and pressure
	Periodicity
	Ghost atoms
	Pressure and stress

	Dynamical systems
	Hamilton's equations of motion
	D'Alembert's principle
	Constraints and generalized coordinates
	D'Alembert's principle


	Phase space, statistics and thermodynamics
	Phase space and phase space averages
	Few microstates
	The microcanonical ensemble, equal a-priori probabilities and entropy 
	Entropy
	The ideal gas

	The canonical ensemble
	Temperature, pressure, chemical potential
	The heat bath

	The grand-canonical ensemble
	Ergodicity
	Normalization of the n-dimensional phase-space density
	Integrating out n - 1 degrees of freedom
	The thermodynamic limit: Integrating out 3N  degrees of freedom


