
Homework assignment 3

Nonlinear finite elements

Note: The submission of homework assignments 1 to 4 is mandatory to
pass the course. The assignments lead from the mathematical formulation
of a model problem to the numerical solution of this problem. They build
on each other. You must achieve at least 50 of the achievable points on
each assignment.

For all tasks, include the solution steps and intermediate results. The
final result alone is not sufficient! We recommend that you use Python
for the solution of numerical tasks. Please create a PDF and attach the
numerical codes as separate files. Please also include a PDF if you use
Jupyter notebooks.

Problem 1 Newton-Raphson-Verfahren

Problem 1.1 Scalar-valued functions

Implementation of a Newton solver

6 achievable points

Find a root for any function f(x) numerically. Write a solver that locally
solves f(x) = 0 using a simple Newton iteration method. Use the following
interface for this:

1 def newton(fun , x0 , jac , tol=1e-6, maxiter =200,

2 callback=None):

3 """

4 Newton solver expects scalar function fun and scalar

5 initial value x0.

1

6

7 Parameters

8 ----------

9 fun : callable(x)

10 Scalar function of a scalar.

11 x0 : float

12 Scalar initial value.

13 jac : callable(f, x)

14 Scalar derivative of f at position x.

15 tol : float , optional

16 Tolerance (with respect to the zero value) for

17 convergence.

18 maxiter : int , optional

19 Maximum number of Newton iterations.

20 callback : callable(x, ** kwargs), optional

21 Callback function to handle logging and convergence

22 stats.

23

24 Returns

25 -------

26 x : float

27 Approximate local root.

28 """

Aborting the Newton iteration

The Newton method must be aborted at some point. The function signature
provides two mechanisms for this: the parameter tol specifies a tolerance
ε by which the function value may differ from zero. This means that the
loop is aborted if the function value |f(xi)| < ε is fulfilled at time step i.
To avoid situations in which no convergence can be achieved, the function
also provides for a maximum number of steps (parameter maxiter). The
iteration is aborted if one of these two criteria is met. Since the Newton
method has not converged when the second criterion is met, an error should
be reported here. This can be done, for example, using an exception with
the raise command.

Callback

The interface mentioned above contains a so-called callback function. This
should follow the interface

1 def solver_callback(x):

2 """ Solver callback for logging.

3

4 Parameters

2

https://docs.python.org/3/library/exceptions.html

5 ----------

6 x : float or np.ndarray

7 Current approximate solution

8 """

9 ...

and, if specified, be called once per Newton iteration with the current ap-
proximate solution x. This callback can then keep track of all intermediate
solutions, for example, and output current convergence criteria, thus helping
you to troubleshoot.

Implement such a callback. What exactly is displayed is up to you.

Illustration using a simple polynomial

First test your Newton solver on the simple polynomial f(x) = x3+x2−x+1.
Choose different starting values for this. For x0 = 0.9 and a relative conver-
gence criterion of ε = 0.01, the output of your callback, the approximation
solutions visited and the convergence behavior could look like this, for exam-
ple:

X FUN JAC

= === ===

9.000e-01 1.639e+00 3.230e+00

3.926e-01 8.220e-01 2.475e-01

-2.929e+00 -1.262e+01 1.888e+01

-2.261e+00 -3.182e+00 9.810e+00

-1.936e+00 -5.741e-01 6.375e+00

-1.846e+00 -3.827e-02 5.533e+00

-1.839e+00 -2.168e-04 5.471e+00

-1.839e+00 -7.094e-09 5.470e+00

-1.839e+00 -2.220e-16 5.470e+00

Now find the root for the same polynomial by starting at x0 = −1.1. Show
the steps of the Newton solver for the starting points x0 = 0.9 and x0 = −1.1,
plotting the current position xi against the iteration number i. What do you
observe?

Note: Your Newton solver should work for arbitrary functions. To do
this, you have to implement the derivative of the function by hand. For
example, to find the root of the function f(x) = x2 − 1, you need an im-
plementation of the derivative df/ dx = 2x, for example in the following
form:

3

1 def f(x):

2 return x * x - 1

3 def df(x):

4 return 2 * x

You can use automatic differentiation from the library JAX to compute
the derivative.

Problem 1.2 Vector-valued functions

7 achievable points

Generalize the implementation of your Newton solver to vector-valued func-
tions f⃗(x⃗). The fun function in the function signature above must now return
a vector (i.e., a numpy array). The jac function returns a matrix. It may
make sense to implement a separate function for the vector-valued imple-
mentation. Use your solver to find the minimum of the function g(x, y) =
2 exp(−10(x2 + y2)) + x2 + y2 + x.

Please answer the following questions in the context of solving this task:

• So far, we have been talking about the Newton method for solving cou-
pled nonlinear equations. Here, we are now asking for the minimization
of a function, which is an optimization problem. How does this fit to-
gether? What special structure does the Jacobian matrix have for an
optimization problem? What do you also call this matrix in this case?

• You have to consider when to abort the Newton iteration. What could
be a reasonable criterion here and why?

• What do the iterations of your solver look like in a two-dimensional plot
in the x-y plane, starting from the starting points (1/2, 1/2) and (5, 5)?
Show the function values g(x, y) color-coded in the background. This
can be done, for example, with the matplotlib function pcolormesh

or contour.

Problem 2 Poisson-Boltzmann equation

We now turn to the solution of the one-dimensional Poisson-Boltzmann equa-
tion. In its dimensionless form, this is

d2Φ

dx2
= sinhΦ. (3.1)

4

https://jax.readthedocs.io/en/latest/automatic-differentiation.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.pcolormesh.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.contour.html

The aim of this task is to implement a solver for this nonlinear equation. You
can use results from the lecture notes, such as expressions for the element
matrices and code snippets.

Problem 2.1 Discretization

3 achievable points

Discretize the nonlinear Poisson equation. Where possible, solve the integrals
involving shape functions and write down the element matrices.

Note: Remember that it is sufficient to express the basis functions using
the shape functions. The exact expressions for the shape functions do
not yet play a role here.

Problem 2.2 Numerical quadrature of the residual

2 achievable points

The final equations for the (discrete) residual contain terms of the form
(NI , sinhΦ), where NI is the basis function and Φ is the approximated solu-
tion of the PDE. These terms can be approximated with Gaussian quadra-
ture. Write the scalar products/integrals that cannot be solved analytically
using the appropriate type of numerical quadrature. Do not fix the number
of quadrature points here, but derive these equations for an arbitrary number
of quadrature points.

Problem 2.3 Tangent Matrix

3 achievable points

Derive the tangent matrix. Show what form the tangent matrix takes in
the linearized form. Compare this linearized tangent matrix with the system
matrix of the linear problem.

Problem 2.4 Implementation of the residual vector and
the tangent matrix

4 achievable points

5

Implement the residual vector and the tangent matrix. We suggest the fol-
lowing signatures for the functions that implement the calculation:

1 def residual(potential_g ,

2 potential_left =0, potential_right =0,

3 dx=1, nb_quad=2, linear=False):

4 """

5 Assemble global residual vector for a specific potential.

6

7 Parameters

8 ----------

9 potential_g : np.ndarray

10 Current potential on the nodes (the expansion

11 coefficients); the length of the array is the number

12 of nodes.

13 potential_left : float

14 Left Dirichlet boundary condition.

15 potential_right : float

16 Right Dirichlet boundary condition.

17 dx : float , optional

18 Grid spacing. (Default: 1)

19 nb_quad : int , optional

20 Number of quadrature points. (Default: 2)

21 linear : bool , optional

22 Linearize mass matrix. (Default: False)

23

24 Returns

25 -------

26 residual_g : np.ndarray

27 Residual vector (same shape as ‘potential_g ‘)

28 """

29 ...

30

31 def tangent(potential_g ,

32 potential_left =0, potential_right =0,

33 dx=1, nb_quad=2, linear=False):

34 """

35 Assemble global tangent matrix for a specific potential.

36

37 Parameters

38 ----------

39 potential_g : np.ndarray

40 Current potential on the nodes (the expansion

41 coefficients); the length of the array is the number

42 of nodes

43 potential_left : float

44 Left Dirichlet boundary condition.

45 potential_right : float

46 Right Dirichlet boundary condition.

6

47 dx : float , optional

48 Grid spacing. (Default: 1)

49 nb_quad : int , optional

50 Number of quadrature points. (Default: 2)

51 linear : bool , optional

52 Linearize mass matrix. (Default: False)

53

54 Returns

55 -------

56 tangent_gg : np.ndarray

57 Tangent matrix (quadratic , number of rows and columns

58 equal number of nodes)

59 """

60 ...

When implementing, you should proceed step by step: First, ignore the
Dirichlet conditions and implement only the Laplace operator. Write the
code for the mass matrix (the sinhΦ term of the differential equation) only
once the Laplace operator is working. Also implement a linear variant where
sinhΦ ≈ Φ. This can server as a reference solution, and we ask you below
to compare with the linearized solution.

Note: It is important that the tangent function returns the correct
derivative(s) of residual. To make your life easy, use automatic dif-
ferentiation from the library JAX.

If you still want to implement the gradient manually, you can test your
implementation numerically. For example, you can calculate the deriva-
tive of the residual function numerically using the difference quotients
and check it against the analytical calculation of tangent. Below is a
code block that does this numerical calculation of the derivative for you:

1 def check_tangent(value_g , residual_fun , tangent_fun ,

2 eps=1e-6):

3 """

4 Check that tangent_fun is gives the derivative_fun

5 using finite differences.

6

7 Parameters

8 ----------

9 value_g : numpy.nd_array

10 Nodal value for which to check the derivative

11 residual_fun : callable

12 Function that takes the values and returns an array

13 of residual values

14 tangent_fun : callable

15 Function that takes the values and return the

7

https://jax.readthedocs.io/en/latest/automatic-differentiation.html
https://jax.readthedocs.io/en/latest/automatic-differentiation.html

16 tangent/jacobian matrix

17 eps : float , optional

18 Finite difference used for numeric computation of

19 the derivative (Default: 1e-6)

20 """

21 nb_nodes = len(value_g)

22 tangent_gg = tangent_fun(value_g)

23 numeric_tangent_gg = np.zeros_like(tangent_gg)

24 for i in range(nb_nodes):

25 _value_g = value_g.copy()

26 _value_g[i] += eps

27 residual_plus_g = residual_fun(_value_g)

28 _value_g[i] -= 2 * eps

29 residual_minus_g = residual_fun(_value_g)

30 numeric_tangent_gg [:, i] = (

31 residual_plus_g - residual_minus_g

32) / (2 * eps)

33 np.testing.assert_array_almost_equal(

34 tangent_gg , numeric_tangent_gg)

35

36

37 # Check if tangent is implemented correctly

38 for i in range (10):

39 check_tangent(np.random.random (21) -0.5, residual ,

tangent)

Problem 2.5 Application of the Newton solver

7 achievable points

Note: If your implementation of the Newton solver does not work for
multidimensional problems, you may also use the Newton solver in the
scipy package. You can find it at scipy.optimize.newton.

Solve the nonlinear Poisson–Boltzmann equation with two Dirichlet bound-
ary conditions, one each on the left and right boundaries. Show the solu-
tions of the equation for 1, 2 and 3 Gaussian quadrature points for a system
of length L = 5λ and a potential of −1kBT/|e| on the left electrode and
5kBT/|e| on the right electrode, where λ is the Debye length. Show a solu-
tion with approximately 10 and 100 nodes. Compare this solution with the
solution of the linearized equation.

8

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.newton.html

Note:

• You have to start the Newton iteration from a specific potential Φ.
What is a good starting point here? If you used the above function
signatures, the call to the Newton solver should look something like
this:

1 nb_nodes = 21 # Number of notes

2 potential0_g = ... # Initial condition

3 potential_g = newton(residual , potential0_g , tangent)

• You may also want to pass a callback function to monitor the con-
vergence of the solver.

• In addition, you should pass the potential boundary conditions and
additional parameters, such as the number of quadrature points, to
the residual and tangent functions. You can do this, for example,
with lambda expressions.

9

https://docs.python.org/3/tutorial/controlflow.html#lambda-expressions

	Nonlinear finite elements
	Newton-Raphson-Verfahren
	Scalar-valued functions
	Vector-valued functions

	Poisson-Boltzmann equation
	Discretization
	Numerical quadrature of the residual
	Tangent Matrix
	Implementation of the residual vector and the tangent matrix
	Application of the Newton solver

