
Finite-Element Method
Numerical solution of partial differential equations

Andreas Greiner, Martin Ladecký, Lars Pastewka

February 5, 2025

© 2017-2024 Andreas Greiner, 2024 Martin Ladecký, 2020-2025 Lars Pastewka
Department of Microsystems Engineering
University of Freiburg

Many thanks to Jan Grießer, Anna Hoppe, Johannes Hörmann, Indre Jödicke,
Maxim Kümmerle, Martin Ladecky, Antoine Sanner and the participants of
the “Simulationstechniken” at the University of Freiburg in the winter terms
of 2020/21 und 2021/22 for comments and edits.

Contents

1 Introduction 1

1.1 Models . 1

1.2 Particles . 4

1.3 Fields . 7

1.4 Which model is the right one? 7

2 Differential equations 9

2.1 Ordinary differential equations 9

2.1.1 Linearity . 9

2.1.2 Order . 10

2.1.3 Systems . 10

2.2 Partial differential equations 11

2.2.1 First order . 11

2.2.2 Second order . 14

3 Transport theory 18

3.1 Diffusion and drift . 18

3.1.1 Diffusion . 19

3.1.2 Drift . 22

3.2 Continuity . 23

3.2.1 Drift . 27

3.2.2 Diffusion . 28

4 Charge transport 29

4.1 Electrostatics . 29

4.2 Drift in an electric field . 30

4.3 Nernst-Planck equation . 31

4.4 Poisson-Nernst-Planck equations 31

4.5 Poisson-Boltzmann equation 32

4.6 Example: Supercapacitor . 33

3

5 Numerical solution 34
5.1 Series expansion . 34
5.2 Residual . 35
5.3 A first example . 36
5.4 Numerical solution . 38

6 Function spaces 40
6.1 Vectors . 40
6.2 Functions . 41
6.3 Basis functions . 42

6.3.1 Orthogonality . 42
6.3.2 Fourier basis . 43
6.3.3 Finite elements . 45

7 Approximation and interpolation 48
7.1 Residual . 48
7.2 Collocation . 49
7.3 Weighted residuals . 50
7.4 Galerkin method . 52
7.5 Least squares . 53

8 Finite elements in one dimension 56
8.1 Differentiability of the Basis Functions 56
8.2 Galerkin method . 58
8.3 Boundary Conditions . 61

8.3.1 Dirichlet Boundary Conditions 61
8.3.2 Neumann boundary conditions 62

9 Assembly 65
9.1 Shape functions . 65
9.2 Assembling the system matrix 68
9.3 Nonuniform one-dimensional grids 70
9.4 Element matrices . 70
9.5 Implementation . 71

10 Nonlinear problems 74
10.1 Numerical quadrature . 74

10.1.1 Poisson-Boltzmann equation 78
10.1.2 Implementation . 79

10.2 Newton-Raphson method . 80
10.2.1 Example: Poisson-Boltzmann equation 82

4

11 Finite elements in two and three dimensions 84
11.1 Differentiability . 84
11.2 Grid . 86

11.2.1 Triangulation . 87
11.2.2 Structuring . 88

11.3 Shape functions . 89
11.4 Galerkin method . 91
11.5 Boundary conditions . 94

11.5.1 Dirichlet boundary conditions 94
11.5.2 Neumann boundary conditions 94

12 Data structures & implementation 96
12.1 Example problem . 96
12.2 Initialization . 98
12.3 System matrix . 99
12.4 Visualization . 103
12.5 Example: Plate capacitor . 106

13 Time-dependent problems 112
13.1 Initial value problems . 112
13.2 Spatial derivatives . 112
13.3 Runge-Kutta Methods . 114

13.3.1 Euler Method . 114
13.3.2 Heun method . 114
13.3.3 Automatic time step control 114

13.4 Stability analysis . 115

0

Chapter 1

Introduction

Context: The term simulation refers to the numerical (computer-aided)
solution of models. In this introductory chapter, we discuss how models
of physical reality are built and present different classes of models. These
models are usually described mathematically by means of differential
equations, i.e. “simulation” is often (but not always) the numerical solution
of a set of ordinary or partial differential equations.

1.1 Models

Models are approximations for the behavior of the physical world at certain
length scales. For example, a model that explicitly describes atoms “lives”
on length scales on the order of nm and may be appropriate to describe the
growth of thin films in semiconductor manufacturing. We would not want to
describe a macroscopic system or phenomenon that lives on scales of ∼ mm
or beyond, such as how water flows out of a tap or how an airplane wing
bends during takeoff, with such a model. Key to carrying out simulations is
therefore the ability to match the physical phenomenon we want to describe
with the appropriate model and the mathematical method required for its
solution.

Note: While we could describe even macroscopic systems with atomic-
scale models, this is typically prohibited by the computer resources avail-
able to us. Macroscopic systems consist of more than 1023 (Avogadro’s
number) atoms, whose positions we would not be able to fit into present
day computers. In addition, the gist of the question we want to answer

1

may be hidden in such a fine-grained atomic-scale model like the legendary
needle in a haystack.

Figure 1.1 shows on the vertical axis length scales and classes of models
that live on these scales. On the shortest length scale, a quantum mechanical
description is usually necessary. This means that if we want to resolve the
world with Å resolution, we find ourselves at the level of quantum mechanics
and all underlying models are of a quantum mechanical nature. Underlying
quantum mechanics is the Schrödinger equation, whose (approximate) solution
is implemented in various methods, such as density functional theory (Martin,
2004), a many-body description of the quantum mechanical electronic system.
If we get rid of modeling the electron explicitly, we arrive at a class of
simulation methods often referred to as molecular dynamics (Allen and
Tildesley, 1989). The key mathematical object in molecular dynamics is the
set of positions and velocities of all atoms, which means we have to introduce
three position and three velocity variables for each of the n interacting particles.
In contrast, in a quantum mechanical many-body description we are dealing
with a field with three n position variables each, namely Ψ(r⃗1, r⃗2, . . . , r⃗n; t).
This illustrates that formulating models on larger length scales requires some
form of coarse-graining, i.e. removing information from a smaller scale model.

Note:

• 1 Å = 10−10m

• The atoms that constitute our physical world are held together by
quantum mechanics. Models based on quantum mechanical princi-
ples are also called ab-initio (“from the beginning”) or first principles
models. The fundamental equation that describes quantum mechan-
ical objects is the Schrödinger equation. It is itself is in fact already
an approximation, despite the fact that models derived from it are
called first principles models!

• The single-particle Schrödinger equation is iℏ ∂
∂t
Ψ(r⃗, t) = ĤΨ(r⃗, t).

This is a partial differential equation for the location- and time-
dependent scalar matter field Ψ(r⃗, t), with Planck’s constant ℏ and
the Hamilton operator Ĥ, which contains the details of the model.
The solution of an equation of motion for many interacting parti-
cles, as described by a wavefunction with mathematical structure
Ψ(r⃗1, r⃗2, . . . , r⃗n; t), is incomparably more complicated.

2

Classical Molecular
 Dynamics

Classical Molecular
 Dynamics

Density Functional Theory
(Car-Parinello...)

Density Functional Theory
(Car-Parinello...)

Boltzmann Equation
Boltzmann Equation

Wigner Equation
Non-Equilibrium
Greens functions

Wigner Equation
Non-Equilibrium
Greens functions

Concentrated Parameter
Models, Network models

Concentrated Parameter
Models, Network models

Continuous Systems
(FEM, FDTD, CV, SPH ...)

Continuous Systems
(FEM, FDTD, CV, SPH ...)

le
n

gt
h

sc
a

le

lo
ca

lit
y

lo
ca

lit
y

w
e

ig
h

te
d

av
e

ra
g

e

sp
a

tia
l

av
e

ra
g

e

ense
mble

ave
rage

Micro...
Fluidics
Mechanics
Optics
Processing
...

m

nm

global balance

local balance

mesoscopic
models

Semiclassical &
classical

mechanics

quantum
mechanics

Dissipative Particle
Dynamics

(DPD,DPDE,MDPD...)

Lattice Boltzmann (LB,
CLB), Spherical

Harmonics Expansion

m
o

m
e

nt

ex
p

a
ns

io
n

M
o

m
e

nt
um

sp

a
ce

av

e
ra

g
e

Electronic transport, material properties

Devices &
System dynamics
...

Figure 1.1: The vertical arrangement of the boxes corresponds to a length
scale, with the shortest scales shown on the bottom. The boxes themselves
show categories of models or simulation methods that are used on these scales.
In this class we deal with the discretization of fields and choose a specific use
case that falls into the local balance category.

3

• “Semiclassical“ means that the motion of the particles is calculated
according to classical mechanics, but the interactions between the
particles are derived from quantum mechanical laws. This is of
course an approximation that needs to be justified.

• “Mesoscopic” means that the model has an internal length scale
and/or thermal fluctuations are important. These models usually
operate on length scales above the atomic scale (∼ nm) but below
the scales of our perception of the environment (∼ mm).

• “Balance” means that the core of the description is a conserved
quantity. Conserved are e.g. particle numbers or mass (that is
typically automatically conserved in models that have particles as
the core mathematical object). The balance equation or balancing
then simply counts the particles that flow into or out of a volume
element over a certain time interval. Other conserved variables that
can be balanced are momentum and energy. The balance equation
is also called the continuity equation.

At the level of semiclassical and classical mechanics, also referred to as
the kinetic level, models are either described by molecular dynamics or by the
equation of motion of the single-particle probability density in phase space
f(r⃗, p⃗) - with location r⃗ and momentum p⃗ as independent variables. In the
second case, we have a function f(r⃗(t), p⃗(t), t) which depends on time both
explicitly and implicitly via r⃗(t) and p⃗(t). Let us assume that we need to
discretize f(r⃗(t), p⃗(t), t) on regular grid of discrete sampling points. At a low
resolution of 10 points per variable, this corresponds to already 10, 000, 000
interpolation points. This may be manageable, but the resolution of such
a model would not particularly good. This undertaking is therefore rather
useless. We do not want to conceal the fact that there are methods for the
numerical solution to the two problems described above, but these will not
be discussed in detail in this class.

1.2 Particles

We can therefore roughly distinguish between two types of models: Models
that have individual discrete elements, for example particles (atoms, molecules,
grains, etc.), as their central mathematical objects and models that have con-
tinuous fields (electrostatic potential, ion concentrations, mechanical stresses

4

and strains) as the central objects. In the first type of model, evolution
equations are formulated for discrete properties defined on the particles, such
as their positions r⃗i and velocities v⃗i.

For example, to describe the kinetics of these particles, we could solve
Newton’s equations of motion. This means that for each of the n particles
we have to formulate 6 ordinary differential equations (ODEs), which are
coupled to each other, namely:

˙⃗ri(t) = v⃗i(t) =
p⃗i(t)

mi

(1.1)

This is the equation for the trajectory of the particle i in space. Since r⃗i is a
vector, Eq. (1.1) is a system of 3 ordinary differential equations. differential
equations. The velocity v⃗i of the particle i at time t is also subject to a system
of differential equations, expressed most simply using the momentum p⃗i,

˙⃗pi(t) = F⃗i(t), (1.2)

where F⃗i(t) is the force acting of particle i at time t. Equation (1.2) describes
the temporal evolution of the momentum of the particle i. Equation (1.1) and
(1.2) are each 3× n coupled ordinary differential equations. If, for example,
we want to describe the movement of all molecules in a liter of water by a
simulation, this is impossible due to the large number of equations and we
must switch to a description using balance equations and fields.

Newton’s equations of motion (1.1) and (1.2) are by their nature basic
physical principles. They apply to atoms or planets. The nature of the force
itself, F⃗i in the equations above, depends on the nature of the physical system
that we study. It is not necessarily a fundamental interaction, such as gravity,
but may emerge from a complex interplay of multiple physical mechanisms.
A simple example is the Lennard-Jones interaction with interaction energy

Vij = 4ε

(σ

rij

)12

−

(
σ

rij

)6
 (1.3)

and force

F⃗ij = −4ε

12(σ12

r13ij

)
− 6

(
σ6

r7ij

) r̂ij. (1.4)

We have written this in terms of a pair interaction and assumes that forces are
pair-wise additive, meaning the total force on particle i is given by F⃗i =

∑
j F⃗ij .

The quantity rij is the distance between the particles (here atoms or molecules)

5

i and j, and r̂ij is the normal vector pointing from one to the other. The
term ∝ r−13 describes the repulsion of the atoms due to the Pauli exclusion
principle and the term ∝ r−7 describes the attraction of the atoms due to
the London dispersion interaction (Müser et al., 2023). Both interactions
are based on fundamental physical principles, but the formulation Eq. (1.4)
reduces these complex phenomena to a simple constituating law. Such laws are
often called constitutive laws. The numerical solution of Newton’s equations
of motion for atoms or molecules is called molecular dynamics simulation.

Note: The term constitutive law often appears in the context of field
theories. For the Lennard-Jones potential, this term is rather unusual,
but this law is nevertheless of a constitutive nature.

Another example of models with discrete elements are network models for
electrical circuits. Here, an element links an electrostatic potential difference
(energy difference) with a current, for example

i = u/R (1.5)

describes the current i that flows through a resistor R across which the
voltage drops by u. Such models are often referred to as “lumped-element
models”. Equation (1.5) naturally also has the quality of a constitutive law,
as complex electronic processes are behind the individual parameter R. For a
fully formulated model of an electric circuits we also need Kirchhoff’s rules,
that have the quality of balance equations. In Fig. 1.1, these models are
therefore referred to as global balance models. “Lumped-element models” also
lead to systems of ordinary differential equations, which are often solved
numerically by explicit time propagation. Well-known representatives of this
type of simulation software are, for example SPICE or MATLAB Simulink.

Such a global balance description is characterized by a lack of interest in
local resolution. We are not interested in densities, but only in total masses,
not in current densities but only in currents. This is best illustrated by the
above-mentioned resistor whose contacts are at different potentials, which
results in a current flow. We do not ask ourselves how the current is distributed
in the resistor. We do not even ask whether the resistor is homogeneous or
inhomogeneous. The model only requires the overall resistance R, essentially
modeling the resistor as a black box to which we assign the value of a single
parameter. This approach is discussed in detail in electrical engineering and
systems theory.

6

1.3 Fields

However, if we now realize that our black box is only insufficiently described
with one parameter, then we need to replace it with a more complex models,
for example an equivalent circuit with details that resolve the internal state of
the component. This in turn can be taken so far, that a continuum is created
at the end - we have arrived at a local balance descriptions. Staying with
the example of flow, we need parameters such as conductivity (or for fluids
viscosity or diffusivity), which now describe the resistance to flow locally.
These parameters can be obtained from experiments or ab-initio simulations
but are required as input to (or the “parameterization” of) the local balance
description.

Local balance means that we can assign density, concentration, temper-
ature or similar quantity to each point in space. However, this means that
the temporal changes in the local degrees of freedom - i.e. the momentum or
velocity - are constrained by a local, thermodynamic-equilibrium condition. (In
thermodynamic equilibrium, the momentum satisfies a Maxwell-Boltzmann
distribution.) This local equilibrium does not mean that we no longer have
dynamics: If we think of a swarm of gas or liquid molecules, then their
individual velocities follow an equilibrium distribution function, but their
mean follows the balance equation. The dynamics are therefore averaged over
a huge number of these particles. Local balance also does not mean that
different temperatures or densities cannot exist at different locations. The
differences in these parameters are then the driving forces of the dynamics –
temperature gradients, density gradients, etc.

Such models fall into the category of field theories, and their mathematical
description is based on partial differential equations. (This is in contrast to
the ordinary differential equations of discrete models.) A transport theory is a
specific class of field theory that is based on the balancing mass, momentum
or energy and requiring constitutive laws for the description of the material
behavior. These constitutive laws contain transport parameters such as the
viscosity or diffusion constant. There are also field theories that have the
character of a basic physical principle. This is, for example, the Schrödinger
equation mentioned above or the Maxwell equations of electrodynamics.

1.4 Which model is the right one?

Choosing and formulating the right model is a form of art. Just because a
theory is called “quantum mechanics” (and leaves one or the other in awe
at its complexity), it does not necessarily offer the solution to the problem

7

that we are trying to solve. Too much detail can even be a hindrance and
we must constantly ask ourselves how much detail is necessary in model and
simulation. We always need ask ourselves before we start a simulation: “Is a
simulation of this complexity really necessary, or can I simplify the problem?”
The simulation should be seen as a tool and not as an end in itself, according
to the American mathematician Richard Wesley Hamming (*1915, †1998):
“The purpose of computing is insight, not numbers”.

8

Chapter 2

Differential equations

Context: Most of the phenomena we encounter in science and engineering
are well described by differential equations. A common example is the
discrete network model used in electrical engineering. This mathematical
formulation is a linear system of ordinary differential equations, with time
as the single independent variable. Another example is the diffusion or
heat-transport process. Diffusive transport is best described using a partial
differential equations, which have more than one independent variable. In
this chapter, we introduce different dimensions of classification, beyond
the classification into ordinary and partial differential equations.

2.1 Ordinary differential equations

We begin by recalling the classification of ordinary differential equations
(ODEs) and identifying the different types. For any given differential equation,
the primary objective is to find the function x(t) that satisfies a specific initial
or boundary value, such as x(t = 0) = x0. This initial value is an integral
part of the equation’s definition.

2.1.1 Linearity

A linear differential equation is, for example

mẍ(t) + cẋ(t) + kx = f(t) (2.1)

which describes the damped and driven harmonic oscillator, while

d2 x

dt2
+ µ(x2 − 1)

dx

dt
+ x = 0 (2.2)

9

is a non-linear equation of motion for x. It describes the so-called van der
Pol oscillator. The non-linearity can be recognized here by the fact that x2

multiplies the derivative dx/ dt.

Note: The first or higher order derivative is a linear operation, since

dn

dxn
λf(x) = λ

dn

dxn
f(x) (2.3)

for a constant λ and

dn

dxn
[
f(x) + g(x)

]
=

dn

dxn
f(x) +

dn

dxn
g(x). (2.4)

Time derivatives are shown by a dot,

ẋ(t) =
d

dt
x(t). (2.5)

For functions of a variable, the derivative is often displayed with a dash,

f ′(x) =
d

dx
f(x). (2.6)

This is no longer possible for functions of several variables. We will
therefore always explicitly use the differential operator here.

2.1.2 Order

The order of a differential equation is given by the highest derivative that
appears in the equation. Eq. (2.1) and Eq. (2.2) are examples of second-order
differential equations.

2.1.3 Systems

A system of first-order differential equations is formed, for example, by the
equations

dx

dt
=x(m− ny), (2.7)

dy

dt
=− y(γ − δx), (2.8)

the well-known predator-prey or Lotka-Volterra equations. Equations (2.7)
and (2.8) are still non-linear.

10

Differential equations of higher order can always be rewritten into a system
of 1st order equations. In the example of the damped harmonic oscillator,

mẍ(t) + cẋ(t) + kx = f(t), (2.9)

we replace ẋ = y and thus obtain two first-order equations instead of the
original second-order equation, namely

ẋ =y (2.10)

mẏ =− cy − kx+ f(t). (2.11)

2.2 Partial differential equations

Partial differential equations (PDEs) involve derivatives of more than one
independent variable. For example, consider a time-dependent heat transport
problem in one dimension, represented by the diffusion equation for the local
temperature of the system. In this case, the temperature is a function of two
independent variables: time t and spatial position x, denoted as T (x, t). The
time evolution of the temperature is governed by the following equation:

∂T (x, t)

∂t
= κ

∂2T (x, t)

∂x2
, (2.12)

where κ denotes the heat conduction coefficient. This equation was developed
by Joseph Fourier (*1768, †1830), whom we will encounter again during this
course.

Note: In Eq. (2.12), ∂/∂t denotes the partial derivative. This is the
derivative with respect to one of the arguments (here t), i.e. the variation
of the function if all other arguments are kept constant. ODEs, in contrast
to PDEs, are characterized by derivatives with respect to just one variable
(usually the time t), which are then denoted by the differential operator
d/ dt.

2.2.1 First order

Quasilinear PDEs of the first order, i.e. equations of the form

P (x, t;u)
∂u(x, t)

∂x
+Q(x, t;u)

∂u(x, t)

∂t
= R(x, t;u), (2.13)

11

for an (unknown) function u(x, t) and the initial condition u(x, t = 0) = u0(x)
can be systematically traced back to a system of coupled first-order ODEs.
We want to investigate this important property.

Note: In Eq. (2.13), a representation with two variables x and t was
chosen for illustration. In general, we can write∑

i

Pi({xi};u)
∂u({xi})
∂xi

= R({xi};u) (2.14)

The notation used here is u({xi}) = u(x0, x1, x2, . . .), i.e. the curly
brackets denote all degrees of freedom xi.

Equation (2.13) can be transformed into a system of ODEs. This is called
the method of characteristics. We can then apply the formalisms (analytical
or numerical) for solving systems of ODEs that we learned about in the lecture
“Differential Equations”. The method of characteristics works as follows:

1. First, we parameterize the independent variables in Eq. (2.13) with a
parameter s according to x(s) and t(s).

2. We then form the total derivative of u(x(s), t(s)) to s

du(x(s), t(s))

ds
=
∂u(x(s), t(s))

∂x

dx(s)

ds
+
∂u(x(s), t(s))

∂t

dt(s)

ds
. (2.15)

3. By comparing the coefficients of the total derivative (3.8) with the
PDE (2.13), you can see that this DGL is solved exactly when

dx(s)

ds
= P (x, t, u), (2.16)

dt(s)

ds
= Q(x, t, u) und (2.17)

du(s)

ds
= R(u(s)). (2.18)

is fulfilled. This describes the solution along certain curves in the
(x, t)-plane.

We have thus converted the PDE into a set of coupled first-order ODEs,
Eq. (2.21)-(2.23).

12

Example: We want to solve the transport equation

∂u(x, t)

∂t
+ c

∂u(x, t)

∂x
= 0 (2.19)

with the initial condition u(x, t = 0) = u0(x). We proceed according to
the recipe above:

1. We parameterize the variables x and t with the help of a new variable
s, i.e. x(s) and t(s). We are now looking for an expression from
which we can determine x(s) and t(s).

2. We first ask how the function u(x(s), t(s)) behaves. This function
describes the change in an initial value u(x(0), t(0)) with the variable
s. The total derivative becomes

du(x(s), t(s))

ds
=
∂u

∂t

dt(s)

ds
+
∂u

∂x

dx(s)

ds
. (2.20)

3. The total derivative is identical to the partial differential equation
that we want to solve, if

dx(s)

ds
= c and (2.21)

dt(s)

ds
= 1. (2.22)

In this case, the following applies

du(s)

ds
= 0. (2.23)

4. The general solution for the three coupled ordinary differential
equations (2.21)-(2.23) is given by

x(s) = cs+ const., (2.24)

t(s) = s+ const. and (2.25)

u(s) = const. (2.26)

5. With the initial conditions t(0) = 0, x(0) = ξ and u(x, t = 0) = f(ξ)
you get t = s, x = ct+ ξ and u = f(ξ) = f(x− ct),

The initial condition f(ξ) is transported with the speed c in the positive
x-direction. The solution for u remains constant, as the derivative of u is
zero, so u retains the value given by the initial condition. The field u(x, 0)
is therefore shifted at a constant speed c: u(x, t) = u(x− ct, 0).

13

2.2.2 Second order

Examples of second-order PDEs are the...

• ...wave equation:
∂2u

∂t2
− ∂2u

∂x2
= 0 (2.27)

• ...diffusion equation (which we will look at in more detail in these notes):

∂u

∂t
− ∂2u

∂x2
= 0 (2.28)

• ...Laplace equation (which we will also get to know better):

∂2u

∂x2
+
∂2u

∂y2
= 0 (2.29)

The term “second order” here refers to the second derivative. These examples
are formulated for two variables, but these differential equations can also be
written down for more degrees of freedom.

For two variables, the general form of second-order linear PDEs is

a(x, y)
∂2u

∂x2
+ b(x, y)

∂2u

∂x∂y
+ c(x, y)

∂2u

∂y2
= F

(
x, y;u,

∂u

∂x
,
∂u

∂y

)
, (2.30)

where F itself must of course also be linear in the arguments if the entire
equation is to be linear. We now classify 2nd order PDEs, but note that this
classification is not exhaustive and that it only applies pointwise. The latter
means that the PDE can fall into a different categories at different points in
space.

We first assume that F = 0 and a, b, c are constant. Then we get:

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
= 0. (2.31)

We rewrite this equation as the quadratic form(
∂/∂x
∂/∂y

)
·

(
a b/2
b/2 c

)
·

(
∂/∂x
∂/∂y

)
u = ∇ · C · ∇u = 0. (2.32)

We now diagonalize the coefficient matrix C. This yields

C = U ·

(
λ1 0
0 λ2

)
· UT , (2.33)

14

where U is unitary (UT · U = 1) due to the symmetry of C. The geometric
interpretation of the operation U is a rotation. We now introduce transformed
coordinates x′ and y′ so that

∇ = U · ∇′ (2.34)

with ∇′ = (∂/∂x′, ∂/∂y′). In other words, the transformation matrix is given
as

U =

(
∂x′/∂x ∂y′/∂x
∂x′/∂y ∂y′/∂y

)
. (2.35)

Equation (2.31) becomes

λ1
∂2u

∂x′2
+ λ2

∂2u

∂y′2
= 0. (2.36)

We have diagonalized the coefficients of the differential equation. For any
function f(z) that is twice differentiable,

u(x′, y′) = f
(√

λ2x
′ + i

√
λ1y

′
)

(2.37)

is a solution of Eq. (2.36).
The analytical expression for the eigenvalues is:

λ1/2 =
−b±

√
b2 − 4ac

2a
(2.38)

We now distinguish three cases:

• The case detC = λ1λ2 = ac− b4/4 = 0 with b ̸= 0 and a ̸= 0 leads to
a parabolic PDE. This PDE is called parabolic because the quadratic
form Eq. (2.32) or (2.33) describes a parabola. (This is of course an
analogy. You have to replace the differential operators with coordinates
for this to work). Without restriction of generality, let λ2 = 0. Then
we get

∂2u

∂x′2
= 0. (2.39)

This is the canonical form of a parabolic PDE.

• The case detC = λ1λ2 = ac− b2/4 > 0 leads to an elliptic PDE. This
PDE is called elliptic because the quadratic form Eq. (2.32) or (2.33)
describes an ellipse for a constant right-hand side. (For λ1 = λ2 it
is a circle). We now convert the equation for the elliptical case to a

15

standardized form and introduce the scaled coordinates x′ =
√
λ1x

′′

and y′ =
√
λ2y

′′. Eq. (2.36) then becomes the canonical elliptic PDE

∂2u

∂x′′2
+
∂2u

∂y′′2
= 0. (2.40)

The canonical elliptic PDE is therefore the Laplace equation, Eq. (2.40)
(here in two dimensions). Solutions of the Laplace equation are called
harmonic functions.

• The case detC = λ1λ2 = ac− b2/4 < 0 results in the so-called hyper-
bolic PDE. This PDE is called hyperbolic because the quadratic form
Eq. (2.32) or (2.33) for a constant right-hand side describes a hyper-
bola. Without restricting the generality, we now require λ1 > 0 and
λ2 < 0. Then we can again introduce scaled coordinates x′ =

√
λ1x

′′

and y′ =
√
−λ2y′′ so that

∂2u

∂x′′2
− ∂2u

∂y′′2
=

(
∂u/∂x′′

∂u/∂y′′

)
·

(
1 0
0 −1

)
·

(
∂u/∂x′′

∂u/∂y′′

)
= 0. (2.41)

We can now use a further coordinate transformation, namely a rotation
by 45◦, to bring the coefficient matrix in Eq. (2.41) to a form in which
the diagonal elements are 0 and the secondary diagonal elements are 1.
This results in the differential equation

∂2u

∂x′′′∂y′′′
= 0, (2.42)

where x′′′′ and y′′′′ are the corresponding rotated coordinates. This
equation is the canonical form of a hyperbolic PDE and is equivalent to
Eq. (2.31) in the new variables x′′′ and y′′′.

For higher dimensional problems, we need to look at the eigenvalues
of the coefficient matrix C. The PDE is called parabolic if there is an
eigenvalue that vanishes, but all other eigenvalues are either greater or less
than zero. The PDE is called elliptic if all eigenvalues are either greater
than zero or less than zero. The PDE is called hyperbolic if there is exactly
one negative eigenvalue and all others are positive or if there is exactly one
positive eigenvalue and all others are negative. It is clear that for PDEs with
more than two variables, these three classes of PDEs are not exhaustive and
there are coefficient matrices that fall outside this classification scheme. For
problems with exactly two variables, this classification leads to the conditions
on the determinants of the coefficient matrix mentioned above.

16

Example: These three types of 2nd-order linear PDEs can also be
solved analytically for some problems. As an example, we solve the
one-dimensional wave equation,

∂2u

∂x2
− 1

c2
∂2u

∂t2
= 0, (2.43)

by separating the variables. We make the ansatz u(x, t) = X(x)T (t),
which leads to

1

X

∂2X

∂x2
=

1

c2
1

T

∂2T

∂t2
. (2.44)

In Eq. (2.44), the left-hand side depends only on the variable x, while the
right-hand side depends only on t. This means that for any x and t, this
equation can only be fulfilled if both sides are equal to a constant and we
thus obtain

1

X

∂2X

∂x2
= −k2 = 1

c2
1

T

∂2T

∂t2
, (2.45)

where k is our constant. This results in the following two equations

∂2X

∂x2
+ k2X = 0 (2.46)

with solution X(x) = e±ikx and

∂2T

∂t2
+ ω2T = 0 (2.47)

with solution T (t) = e±iωt, where we have set ω2 = c2k2.

17

Chapter 3

Transport theory

Context: This chapter introduces the foundations of transport theory, in
particular how to balance conserved quantity. This leads to the continuity
equation, which describes conservation of a quantity. We start from a
classic and illustrative example, the diffusion of particles suspended in a
liquid.

3.1 Diffusion and drift

Diffusive transport can be easily understood through the concept of a “ran-
dom walk”, which describes the stochastic movement of particles. This
phenomenon, known as random motion, was first observed by the botanist
Robert Brown (1773–1858), who noticed the erratic movement of pollen grains
suspended in water. His observations led to the term Brownian motion or
Brownian molecular motion, though Brown himself was unaware of the exis-
tence of molecules at the time. Initially, he believed the movement resulted
from active biological processes (the “force of life” in the pollen), but he
later demonstrated that inanimate matter also exhibits this random motion.
Today, we understand that this movement is caused by thermal fluctuations,
where molecules randomly collide with suspended particles, propelling them
in random directions. This explanation, which depends on the existence of
atoms, was popularized in 1905 by Albert Einstein (Einstein, 1905).

Brownian molecular motion leads to diffusive transport. Figure 4.1 shows
a simple qualitative thought experiment. The configuration in Fig. 4.1a shows
a localization of the “pollen” in the left half of the domain shown. Due to
their random movement (shown as an example by the red line in Fig. 4.1a),
some of the pollen will cross the dashed boundary line into the right half and
also come back again. After a certain time, the initial state can no longer be

18

Figure 3.1: Illustration of diffusion. The “pollen” in (a) move randomly in the
domain. After a certain time (b), the initial concentration difference between
the left and right parts of the domain is equalized.

xj−2

r q
N

xj−1

r r
xj

p

xj+1

r
xj+2

r
Figure 3.2: Random movement in one dimension is given by transition
probabilities p (for a movement to the left) and q for a movement to the right.

identified and the pollen are distributed throughout the domain (Fig. 4.1b).
The concentration is now constant. The pollen continue to move, but on
average the same number of pollen move to the left as to the right. In the
case shown in Fig. 4.1a, this left/right symmetry is broken which leads to a
finite flux to the right.

This thought experiment can be easily formalized mathematically. We
consider a particle that performs a random movement in one dimension. We
start with a particle that randomly jumps back and forth on a straight line.
The straight line lies along the x-direction. The particle can only move to
predetermined positions on the x-axis, which we denote by xj and which are
equidistant, xj − xj−1 = ∆x for j ∈ Z (see Fig. 3.2).

A particle jumps to the left with a probability p and to the right with a
probability probability q. In addition, we have the probability of finding a
particle at time t at position x, given on the 1D grid by the function P (xj, t).

3.1.1 Diffusion

We first consider the case p = q = 1/2, i.e. that the probabilities for the
jumps to the left and right are identical. We assume that the particles jump
from site to its neighbors in a discrete, finite and constant time step τ . Then

19

the probability of finding a particle at time t+ τ at location x is

P (x, t+ τ) =
1

2
P (x+∆x, t) +

1

2
P (x−∆x, t), (3.1)

where P (x−∆x, t) is the probability of finding a particle at position x−∆x
and P (x+∆x, t) the probability of finding a particle at x+∆x, both at time
t.

By subtracting P (x, t) on both sides and dividing by τ , we obtain the
following equivalent form:

P (x, t+ τ)− P (x, t)

τ
=

∆x2

2τ

P (x+∆x, t)− 2P (x, t) + P (x−∆x, t)

∆x2
(3.2)

We can now make the limit transition to the “continuum”. Taking τ → 0
and at the same time ∆x→ 0 while maintaining

lim
∆x→0,τ→0

∆x2

2τ
= D (3.3)

yields
∂P (x, t)

∂t
= D

∂2P (x, t)

∂x2
. (3.4)

This is the well-known diffusion equation.

Note: Given a function f(x, y), we write the partial derivative of this
function with respect to x as

∂f

∂x
= ∂xf. (3.5)

The second derivative with respect to x is then

∂2f

∂x2
= ∂2xf. (3.6)

Mixed derivatives are written as

∂2f

∂x∂y
= ∂x∂yf. (3.7)

The total derivative is indicated with the letter d, e.g.

df

dt
=
∂f

∂x

∂x

∂t
+
∂f

∂y

∂y

∂t
(3.8)

20

for f = f(x, y), x = x(t) and y = y(t).
Sometimes the prime is used to a indicate derivative, e.g. f ′(x) =

df/ dx is the derivative of f . It is common to indicate the derivative with
respect to time by a dot, i.e. given f(t) the derivative ḟ(t) = df/ dt. We
will use these notations occasionally for brevity but point out that writing
the differential operator explicitly is less ambiguous. In particular, for
functions of more than one variable the differential operator allows us to
distinguish clearly between total and partial derivatives.

In multiple dimensions, the second derivative becomes the Laplace operator
∇2,

∂P (x, t)

∂t
= D∇2P (x, t). (3.9)

This equation is only correct if the diffusion constant is actually constant and
does not vary spatially.

Note: The operator∇ is a vector of the partial derivatives in the Cartesian
direction, i.e.

∇ =

∂/∂x∂/∂y
∂/∂z

 . (3.10)

Applying it to a scalar function f(x, y, z) yields the gradient,

∇f = grad f =

∂f/∂x∂f/∂y
∂f/∂z

 . (3.11)

The Laplacian is sometimes denoted by ∇2 (often in the anglo-saxon
literature) or ∆ (e.g. in the German literature). It is explicitly given by

∆ = ∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (3.12)

We will use ∇2 for the Laplacian throughout this text.

21

3.1.2 Drift

What happens if the probabilities for the jumps to the right or left are not
equal, p ̸= q (but of course p + q = 1 because we would be creating or
destroying particles if this condition was violated)? We still assume discrete,
uniform time steps and equidistant sampling points.

In this case, we have

P (x, t+ τ) = pP (x+∆x, t) + qP (x−∆x, t) (3.13)

which yields

P (x, t+ τ)− P (x, t)

τ
=

∆x2

τ

pP (x+∆x, t)− P (x, t) + qP (x−∆x, t)

∆x2
.

(3.14)
This can be simplified by writing

p =
1

2
− ε and q =

1

2
+ ε with 0 ≤ |ε| ≤ 1

2
or 2ε = q − p, (3.15)

where ε now indicates how much more likely a jump to right is than to the
left. A positive ε therefore means that the particles will move to the right on
average – this is called drift. We can now write Eq. (3.14) using ε, giving

P (x, t+ τ)− P (x, t)

τ
=
∆x2

2τ

P (x+∆x, t)− 2P (x, t) + P (x−∆x, t)

∆x2

− 2ε∆x

τ

P (x+∆x, t)− P (x−∆x, t)

2∆x
.

(3.16)

In the limit τ → 0 and ∆x→ 0 we require

lim
∆x→0,τ→0

∆x2

2τ
= D and lim

∆x→0,τ→0

2ε∆x

τ
= v (3.17)

and thus obtain the drift-diffusion equation

∂P (x, t)

∂t
=

(
D
∂2

∂x2
− v

∂

∂x

)
P (x, t). (3.18)

Here, the first summand on the right-hand side again describes the diffusion
process. The second summand is a drift process and v is a constant drift
velocity. (From Eq. (3.17) and (3.18) it can be seen that the unit of v
corresponds exactly to a velocity.) It is the speed at which the particle moves
(on average) along the x-axis.

22

Note: The motion of our particle was modeled using a probability density
P . In the thermodynamic limit, i.e. for many particles (usually of the order
of Avogadro’s number NA ∼ 1023), this probability becomes the (mass)
density ρ or the concentration (number density) c. We can therefore simply
replace the probability P in the above equations with a concentration c.
The reason for this is that we can write the concentration as an ensemble
mean,

c(x, t) = ⟨1⟩(x, t), (3.19)

where the mean value is defined as

⟨f(x)⟩(x, t) = f(x)P (x, t). (3.20)

3.2 Continuity

The equations (3.9) and (3.18) mix two concepts that we want to treat
separately now: The conservation of the number of particles (continuity) and
the process that leads to a flow of particles (diffusion or drift). The number of
particles is conserved simply because we cannot create atoms out of nothing
or destroy them into nothing. If we have a certain number of particles Ntot

in our overall system, we know that this number

Ntot(t) =

∫
d3 r c(r⃗, t) (3.21)

cannot change over time: dNtot/ dt = 0. The integral in Eq. (3.21) is carried
out over the total volume of our system, essentially the physical world of the
model.

For a small section of our physical world with volume V , the number of
particles can change because they can flow through the walls of this sample
volume (see Fig. 3.3). The change in the number of particles within V is
given by

ṄV =
∂

∂t

∫
V

d3 r c(r⃗, t) =

∫
V

d3 r
∂c

∂t
. (3.22)

However, the change ṄV must also be given by the number of particles flowing
through the side walls. For a cube (Fig. 3.3) with six walls, we can simply
count the number of particles through each of the walls per unit time. It is

23

Figure 3.3: Particles can only leave the volume V through the side walls. The
change in the number of particles N over a time interval τ is therefore given
by the number of particles flowing through the walls. For this we need the
particle flows j. The number of particles flowing through a surface is then
given by j Aτ , where A is the area of the side wall.

approximately given

ṄV =− jrightAright − jleftAleft

− jaboveAabove − jbottomAbottom

− jfrontAfront − jbackAback

(3.23)

if the walls are small enough so that j is almost constant over A. We
have, in passing, introduced the current density j with unit number of
particles/time/area. The quantities jA are hence the number of particles
flowing per unit time through one of the walls with are A.

The scalar current density j describes the current flowing out of the surface.
For a general vectorial current density j⃗, which indicates the strength and
direction of the particle current, the total current density flowing out of the
volume through wall i is given by ji = j⃗i · n̂i, where n̂i is the normal vector
pointing outwards on wall i. The current through the wall is therefore only

24

the component of j⃗ that is parallel to the surface normal (or perpendicular
to the wall). With this argument, we can generalize the expression for the
change in number of particles to

ṄV = −
∫
∂V

d2 r j⃗(r⃗) · n̂(r⃗) (3.24)

where ∂V denotes the surface area of the volume V . This equation explicitly
indicates that both the flux j⃗ and the surface normal n̂ depend on the position
r⃗ on the surface.

Alternatively, we can also group the change in the number of particles,
Eq. (3.23), as follows:

ṄV =− (jright + jleft)Aright/left

− (jtop + jbottom)Atop/bottom

− (jfront + jrear)Afront/back

(3.25)

Here we have used the fact that Aright = Aleft ≡ Aright/left. But now

jright = x̂ · j⃗(x+∆x/2, y, z) = jx(x+∆x/2, y, z) and

jleft = −x̂ · j⃗(x− δx/2, y, z) = −jx(x− δx/2, y, z)
(3.26)

since n̂ = x̂ for the right wall but n̂ = −x̂ for the left wall. Here, x̂ is the
normal vector along the x-axis of the coordinate system. The sign of the
surface normal is therefore reversed between the right and left surfaces. The
same applies to the top/bottom and front/back walls. We can further rewrite
this equation as

ṄV =− jx(x+∆x/2, y, z)− jx(x−∆x/2, y, z)

∆x
V

− jy(x, y +∆y/2, z)− jy(x, y −∆y/2, z)

∆y
V

− jz(x, y, z +∆z/2)− jz(x, y, z −∆z/2)

∆z
V,

(3.27)

since V = Aright/left∆x = Atop/bottom∆y = Afront/back∆z. However, the factors
in front of the volume V in Eq. (3.27) are now exactly the difference quotients
of the flows ji, in the x, y and z directions respectively. For small volumes
(and small ∆x, etc.) this becomes

ṄV = −
∫
V

d3 r∇ · j⃗(r⃗). (3.28)

We have just heuristically derived the divergence theorem (see also Eq. (3.30))
to express Eq. (3.24) as a volume integral.

25

Note: We have expressed the divergence of a vectorial field f⃗(r⃗) through
the nabla operator,

∇ · f⃗ = div f⃗ =
∂fx
∂x

+
∂fy
∂y

+
∂fz
∂z

(3.29)

The divergence theorem is an important result of vector calculus. It
converts an integral over a volume V into an integral over the surface ∂V
of this volume. For a vector field f⃗(r⃗) applies:∫

V

d3 r∇ · f⃗(r⃗) =
∫
∂V

d2 r f⃗(r⃗) · n̂(r⃗) (3.30)

Here n̂(r⃗) is the normal vector which points outwards on the edge ∂V of
the volume V . Note that in one dimension this reduces to∫ b

a

dx
∂f

∂x
= f(b)− f(a), (3.31)

which is the integration rule we all know from high school. The divergence
theorem is hence a generalization of this integration rule to functions of
many variables.

Equation (3.22) and (3.28) together result in∫
V

d3 r

{
∂c

∂t
+∇ · j⃗

}
= 0. (3.32)

Since this applies to any volume V , the equation

∂c

∂t
+∇ · j⃗ = 0 (3.33)

must also hold. This equation is called continuity equation. It describes the
conservation of the number of particles or the mass of the system.

Note: In the derivation presented here, we have already implicitly used
the strong formulation and a weak formulation of a differential equation.
Equation (3.33) is the strong formulation of the continuity equation. This
requires that the differential equation is satisfied for every spatial point r⃗.
A corresponding weak formulation is Eq. (3.32). Here it is only required

26

that the equation is fulfilled in a kind of mean value, here as an integral
over a sample volume V . Within the volume, the strong form need not
be satisfied, but the integral over deviations from the strong form (which
we will later call “residuum”) must vanish. The weak formulation is
thus an approximation for finite sample volumes V . In many numerical
approaches, a weak equation is solved exactly for a certain (approximate)
initial function.

We can still require that “particles” are produced within our sample
volume. In the current interpretation of the equation, this could be, for
example, chemical reactions that convert one type of particle into another.
An identical equation applies to heat transport, because just like particle
numbers, also the energy is a conserved quantity. Here, a source term would be
the production of heat, e.g. by a heating element. Given a flow Q (with unit
number of particles/time/volume), the particle or heat source, the continuity
equation can be extended to

∂c

∂t
+∇ · j⃗ = Q. (3.34)

The continuity equation with source term is also sometimes referred to as the
balance equation.

Note: Equation (3.34) describes the change in concentration c over time.
A related question is what the concentration c becomes after a very long
time - when a dynamic equilibrium has been reached and the concentration
no longer varies but is stationary. This equilibrium is then characterized
by the fact that ∂c/∂t = 0. The equation

∇ · j⃗ = Q (3.35)

is the stationary variant of the continuity equation.

3.2.1 Drift

Let us come back to transport processes, first to drift. If all particles in our
sample volume move with the velocity v⃗, this leads to a particle flow

j⃗Drift = cv⃗. (3.36)

When inserted into the continuity equation (3.33), this results in the drift
contribution to the drift-diffusion equation (3.18).

27

3.2.2 Diffusion

From our thought experiment above, it is clear that the diffusion current
must always point in the direction of lower concentration, i.e. in the direction
opposite to the gradient ∇c of the concentration. The corresponding current
is given by

j⃗Diffusion = −D∇c. (3.37)

When inserted into the continuity equation (3.33), this results in the diffusion
equation (3.9).

The entire drift-diffusion equation therefore has the form

∂c

∂t
+∇ · (−D∇c+ cv⃗) = 0. (3.38)

In contrast to equations (3.9) and (3.18), this equation also applies if the
diffusion constant D or drift velocity v⃗ varies spatially.

Note: We have introduced transport theory here in terms of a particle
concentration c. However, similar continuity equations describes the
conservation of other quantities, in particular momentum and energy.
Continuity of momentum leads to the Navier-Stokes equations. The
continuity equation for the energy leads to the heat conduction equation.

28

Chapter 4

Charge transport

Context: In this learning module, we will introduce the specific equations
that describe charge transport. Similar equations can be found for charge
transport in semiconductors and in electrolytes. In particular, similar
equations should have already appeared in the lecture “Semiconductor
Physics”. We will develop the equations here in the context of electrochem-
istry. The aim of the chapter is to introduce the Poisson-Nernst-Planck
equation, which we will solve numerically in the rest of the course.

4.1 Electrostatics

We will repeat the basics of electrostatics here. A point charge q at the
position r⃗0 generates an electrostatic potential of the form

Φ(r⃗) =
1

4πε

q

|r⃗ − r⃗0|
, (4.1)

where ε = ε0εr is the permittivity. In vacuum, εr = 1. We will only discuss
(aqueous) electrolytes here, i.e. ions dissolved in water. For water, εr ≈ 80.
Equation (4.1) is the specific solution of the Poisson equation,

∇2Φ(r⃗) = −ρ(r⃗)
ε

(4.2)

for a point charge ρ(r⃗) = qδ(r⃗ − r⃗0).
The Poisson equation has the same form as the (stationary) diffusion

equation from chapter 3. We can also split this into two equations. First, the
electric field E⃗ is given by

E⃗ = −∇Φ, (4.3)

29

the (negative) gradient of the potential. (In the sense of the analogy to the
diffusion equation, the field is a kind of current density.) The “continuity
equation” for the field is given by

∇ · E⃗ =
ρ

ε
. (4.4)

Together, these equations yield the Poisson equation.
We will need the Poisson equation to calculate the electrostatic potential

(and thus the electric field) within an electrolyte. Within the electrolyte, we
usually have a positively and a negatively charged species, with corresponding
concentrations c+(r⃗) and c−(r⃗). The corresponding charge density is then
proportional to the difference of these concentrations, ρ(r⃗) = |e|(c+(r⃗)−c−(r⃗)).

4.2 Drift in an electric field

The charges in our electrolyte not only generate an electric field, they also
react to it. The force f⃗ acting on a particle with charge q is given by

f⃗E = qE⃗. (4.5)

Positively charged particles move in the direction of the electric field, nega-
tively charged particles against it.

So there is a force acting on our ions due to the electric field. This force
alone would lead to an acceleration of the ions, i.e. a continuous increase in
speed. Since the ion moves in a medium (solvent, e.g. water), it experiences
a flow resistance (see Fig. In the case of laminar flow around a spherical
particle with radius R, this is caused only by internal friction within the fluid.
The resulting force acts against the direction of motion and is described by
Stokes’ law,

f⃗Stokes = −6πηRv⃗ = −v⃗/Λ, (4.6)

with Λ = (6πηR)−1 is described. Here, η is the viscosity of the liquid. The

quantity Λ is called mobility. In equilibrium f⃗E+ f⃗Stokes = 0, the drift velocity
is obtained

v⃗ = qΛE⃗. (4.7)

This drift velocity, together with j⃗ = cv⃗, gives the drift current caused by the
electric field,

j⃗ = qΛcE⃗ = σE⃗ (4.8)

with σ = qΛc. The quantity σ is also called conductivity. An equivalent law
applies, for example, to electron conduction in metals.

30

Figure 4.1: A particle (e.g. an ion) moving in a liquid experiences drag. At
low speeds, this is caused by internal friction within the surrounding fluid.

4.3 Nernst-Planck equation

A diffusion current in combination with drift in the electric field yields the
Nernst-Planck equation. The current density for ionic species α is given by

j⃗α = −Dα∇cα + qαΛαcαE⃗, (4.9)

where we have explicitly indicated by the index α that the transport parame-
ters (D, Λ), the charge q and the concentration c depend on the ionic species.
Using the Einstein-Smoluchowski relationship, D = ΛkBT , the mobility Λ
can be expressed in terms of the diffusion constant D. This leads to the usual
form of the Nernst-Planck equation,

j⃗α = −Dα

(
∇cα +

qα
kBT

cα∇Φ

)
, (4.10)

in which we have expressed the electric field as E⃗ = −∇Φ.

4.4 Poisson-Nernst-Planck equations

We now combine the Nernst-Planck transport problem with the solution of
the Poisson equation to determine the electrostatic potential Φ. For this
purpose, we have to consider two ion species here, one positively (charge q+)
and one negatively (charge q−) charged. Thus, in addition to the potential Φ,
we have to determine two concentrations c+ and c−.

The coupled system of equations that describes the transport processes in

31

our electrolyte solution therefore looks like this:

∂

∂t
c+ +∇ · j⃗+ = 0 (conservation of positive species)

(4.11)

j⃗+ = −D+

(
∇c+ +

q+
kBT

c+∇Φ

)
(transport of the positive species)

(4.12)

∂

∂t
c− +∇ · j⃗− = 0 (Conservation of the negative species)

(4.13)

j⃗− = −D−

(
∇c− +

q−
kBT

c−∇Φ

)
(Transport of the negative species)

(4.14)

∇2Φ = −q+c+ + q−c−
ε

(Electrostatic potential) (4.15)

We will solve this coupled system of differential equations using the finite
element method as part of this course. These equations are called the Poisson-
Nernst-Planck equations.

Note: A set of equations identical to Eq. (4.11) to (4.15) describes the
transport of charge carriers in semiconductors. The positive charge carriers
are holes and the negative ones are electrons. What is referred to here
as the “chemical potential” is sometimes called the quasi-potential level
there. This type of charge carrier transport has already been discussed in
the lecture “Semiconductor Physics”.

In addition to the transient solution of the problem, i.e. the time propaga-
tion of the two concentrations c+ and c−, the stationary solution is also inter-
esting. For the stationary solution, the time dependence, i.e. ∂c+/−/∂t = 0,
disappears in these equations. Here, we will consider both the transient and
the stationary solution of this and similar systems of equations.

4.5 Poisson-Boltzmann equation

The Nernst-Planck equation can be simplified by introducing a chemical
potential. The chemical potential integrates the effect of diffusion into an

32

effective potential
µα(r⃗) = qαΦ(r⃗) + kBT ln cα(r⃗). (4.16)

The term qαΦ is the potential energy of an ion with charge qα in an electric
field. The term kBT ln cα is the free energy of an ideal gas with density cα.
We can describe the ions as an ideal gas here because (in our model) they only
interact via the electrostatic potential. The current density then becomes
proportional to the gradient of the chemical potential µ,

j⃗α = − Dα

kBT
cα∇µ = −Λαcα∇µ. (4.17)

Inserting eq. (4.16) into eq. (4.17) gives eq. (4.10).
Equation (4.17) tells us that no current flows if the chemical potential µ

is spatially constant. This is exactly the case if

cα(r⃗) = c0 exp

(
−qαΦ(r⃗)

kBT

)
(4.18)

with a constant c0. This equation in conjunction with the Poisson equation
to determine Φ is also called the Poisson-Boltzmann equation.

4.6 Example: Supercapacitor

In the following video, we discuss the application of the Poisson-Nernst-
Planck equation for modeling charge transport in supercapacitors with porous
electrodes.

33

Chapter 5

Numerical solution

Context: We will now put the transport problem aside for a while and
devote ourselves to the numerical solution of differential equations. This
chapter illustrates the basic ideas behind numerical analysis of differential
equations. It introduces a few important concepts, in particular the series
expansion and the residual. The presentation here follows chapter 1 from
Boyd (2000).

5.1 Series expansion

In abstract notation, we are looking for unknown functions u(x, y, z, ...) that
solve a set of differential equations

Lu(x, y, z, . . .) = f(x, y, z, . . .) (5.1)

must be fulfilled. Here, L is a (not necessarily linear) operator that contains
the differential (or integral) operations. We now introduce an important con-
cept for the (numerical) solution of the differential equation: We approximate
the function u by a truncated series expansion of N terms. We write

uN(x, y, z, . . .) =
N∑

n=1

anφn(x, y, z, . . .) (5.2)

where the φn are called “basis functions”. We will discuss the properties of
these basis functions in more detail in the next chapter.

We can now write the differential equation as,

LuN(x, y, z, . . .) = f(x, y, z, . . .). (5.3)

34

This representation means that we have now replaced the question of the
unknown function u with the question of the unknown coefficients an. We
only have to let the differential operator L act on the (known) basis functions
φn and we can calculate this analytically.

What remains is to determine the coefficients an. These coefficients are
numbers, and these numbers can be calculated by a computer. Equation (5.2)
is of course an approximation. For certain basis functions, it can be shown
that these are “complete” and can therefore represent certain classes of
functions exactly. However, this is only true under the condition that the
series Eq. (5.2) is extended to N → ∞. For all practical applications (such as
implementations in computer code), however, this series expansion must be
aborted. A “good” series expansion approximates the exact solution already
at low N with a small error. With this statement, we would of course have
to specify how we want to quantify errors. Numerically, we then search for
the exact coefficients an that minimize the error. The choice of a good basis
function is non-trivial.

5.2 Residual

An important concept is that of the residual. Our goal is to solve Eq. (5.1).
The exact solution would be Lu−f ≡ 0. However, since we can only construct
an approximate solution, this condition will not be fulfilled exactly. We define
the residual as exactly this deviation from the exact solution, namely

R(x, y, z, . . . ; a0, a1, . . . , aN) = LuN(x, y, z, . . .)− f(x, y, z, . . .). (5.4)

The residual is therefore a kind of measure for the error we make. The strategy
for numerically solving the differential equation Eq. (5.1) is now to determine
the coefficients an in such a way that the residual Eq. (5.4) is minimal. We
have thus mapped the solution of the differential equation to an optimization
problem. The different numerical methods, which we will discuss in the next
chapters, are mainly determined by the specific optimization strategy.

Note: Numerical methods for optimization are a central core of the nu-
merical solution of differential equations and thus of simulation techniques.
There are countless optimization methods that work better or worse in
different situations. We will first treat such optimizers as “black boxes”.
At the end of the course, we will return to the question of optimization and
discuss some well-known optimization methods. The term minimization
method is often used synonymously with optimization methods. A good

35

overview of optimization methods can be found in the book by Nocedal
and Wright (2006).

5.3 A first example

We now want to concretize these abstract ideas using an example and introduce
a few important terms. Let’s look at the one-dimensional boundary value
problem,

d2 u

dx2
− (x6 + 3x2)u = 0, (5.5)

with the boundary conditions u(−1) = u(1) = 1. (I.e. x ∈ [−1, 1] is the
domain on which we are looking for the solution.) In this case, the abstract
differential operator L takes the concrete form

L =
d2

dx2
− (x6 + 3x2) (5.6)

is given. The exact solution to this problem is given by

u(x) = exp
[
(x4 − 1)/4

]
. (5.7)

We now guess an approximate solution as a series expansion for this
equation. This approximate solution should already fulfill the boundary
conditions. The equation

u2(x) = 1 + (1− x2)(a0 + a1x+ a2x
2) (5.8)

is constructed in such a way that the boundary conditions are fulfilled. We
can express these as

u2(x) = 1 + a0(1− x2) + a1x(1− x2) + a2x
2(1− x2) (5.9)

to exponentiate the basis functions φi(x). Here φ0(x) = 1 − x2, φ1(x) =
x(1− x2) and φ2(x) = x2(1− x2). Since these basis functions are non-zero on
the entire domain [−1, 1], this basis is called a spectral basis. (Mathematically:
The carrier of the function corresponds to the domain.)

In the next step, we must find the residual

R(x; a0, a1, a2) =
d2 u2
dx2

− (x6 + 3x2)u2 (5.10)

36

Out[]=

-1.0 -0.5 0.5 1.0
x

0.80

0.85

0.90

0.95

1.00

u

Exaktes u

Numerisches u2

Figure 5.1: Analytical solution u(x) and “numerical” approximate solution
u2(x) of the GDGL (5.5).

minimize. For this we choose a strategy called collocation: We require that
the residual vanishes exactly at three selected points:

R(xi; a0, a1, a2) = 0 for x0 = −1/2, x1 = 0 und x2 = 1/2. (5.11)

Note: The disappearance of the residual at xi does not mean that u2(xi) ≡
u(xi), i.e. that at xi our approximate solution corresponds to the exact
solution. We are still restricted to a limited set of functions, namely the
functions covered by Eq. (5.8).

From the collocation condition we now get a linear system of equations
with three unknowns:

R(x0; a0, a1, a2) ≡− 659

256
a0 +

1683

512
a1 −

1171

1024
a2 −

49

64
= 0

R(x1; a0, a1, a2) ≡− 2(a0 − a2) = 0

R(x2; a0, a1, a2) ≡− 659

256
a0 −

1683

512
a1 −

1171

1024
a2 −

49

64
= 0

(5.12)

The solution of these equations results in

a0 = − 784

3807
, a1 = 0 and a2 = a0. (5.13)

Figure 5.1 shows the “numerical” solution u2(x) in comparison with the exact
solution u(x).

In the numerical example shown here, both the basis functions and the
strategy for minimizing the residual can be varied. In the course of this

37

lecture, we will establish the finite elements as basis functions and use the
Galerkin method as minimization strategy. To do this, we must first discuss
properties of possible basis functions.

Note: The example shown here is a simple case of discretization. We have
gone from a continuous function to the discrete coefficients a0, a1, a2.

5.4 Numerical solution

It is straightforward to arrive at a numerical solution with Python. The first
step is to realize that Eqs. (5.12) is a system of linear equations. We can
generally write

K00a0 +K01a1 +K02a2 = f0

K10a0 +K11a1 +K12a2 = f1

K20a0 +K21a1 +K22a2 = f2

(5.14)

with the coefficients Kij and fi from Eqs. (5.12). Equations (5.14) are the
product of the matrix K with the vector a⃗ of unknown coefficients, i.e.

K · a⃗ = f⃗ . (5.15)

The coefficients ai are thefore given by the solution of this system of linear
equations. The matrix K is called the system matrix and f⃗ is the load vector.

In Python, we first need to enter the matrix coefficient

1 K00 = -659/256

2 K01 = 1683/512

3 K02 = -1171/1024

4 f0 = 49/64

5

6 K10 = -2

7 K11 = 0

8 K12 = 2

9 f1 = 0

10

11 K20 = -659/256

12 K21 = -1683/512

13 K22 = -1171/1024

14 f2 = 49/64

System matrix and load vector can be defined as a numpy-arrays

38

1 import numpy as np

2 K = np.array ([[K00 , K01 , K02],

3 [K10 , K11 , K12],

4 [K20 , K21 , K22]])

5 f = np.array([f0 , f1 , f2])

and we can directly compute the solution with the standard solver for systems
of linear equations,

1 a0 , a1 , a2 = np.linalg.solve(K, f)

39

Chapter 6

Function spaces

Context: Before we dive deeper into the numerical solution of partial
differential equations, we need to introduce a mathematical concept:
Function spaces, or more concretely Hilbert spaces. Function spaces are
useful because they formalize the series expansion and provide access to
the coefficients of the expansion through the concept of basis functions.

6.1 Vectors

As an introduction, let us recall the usual Cartesian vectors. We can represent
a vector a⃗ = (a1, a2, a3) as a linear combination of basis vectors ê1, ê2 and ê3,

a⃗ = a1ê1 + a2ê2 + a3ê3. (6.1)

The unit vectors ê1, ê2 and ê3 are of course the vectors that span the Cartesian
coordinate system. (In previous chapters, we also used the notation x̂ ≡ ê1,
ŷ ≡ ê2 and ẑ ≡ ê3.) The numbers a1, a2 and a3 are the components or
coordinates of the vector, but also the coefficients multiplying the unit vectors
in Eq. (6.1). In this sense, they are identical to the coefficients of the series
expansion, with the difference that the êis are orthogonal, i.e.

êi · êj = δij (6.2)

where δij is the Kronecker-δ. Two Cartesian vectors a⃗ and b⃗ are orthogonal if
the scalar product between them vanishes:

a⃗ · b⃗ =
∑
i

a∗i bi = 0 (6.3)

Using the scalar product, we can obtain the components as ai = a⃗ · êi, which
can be interpreted as the project of a⃗ on the respective basis vector. This is a
direct consequence of the orthogonality of the basis vectors êi.

40

6.2 Functions

In the previous section, we claimed that the basis functions from Chapter 5
are not orthogonal. For this we need an idea for orthogonality of functions.
With a definition of a scalar product between two functions, we can then
define orthogonality as the vanishing of this scalar product.

We now introduce a scalar product on functions (or function spaces).
Given two functions g(x) and f(x) on the interval x ∈ [a, b], define the scalar
product as

(f, g) =

∫ b

a

dx f ∗(x)g(x), (6.4)

where f ∗(x) is the complex conjugate of f(x). This scalar product or inner
product is a map to a real number with the properties

• Positive definite: (f, f) ≥ 0 and (f, f) = 0 ⇔ f = 0

• Sesquilinear: (αf + βg, h) = α∗(f, h) + β∗(g, h) and (f, αg + βh) =
α(f, g) + β(f, h)

• Hermitian: (f, g) = (g, f)∗

The scalar products Eq. (6.3) and (6.4) both fulfill these properties.

Note: The scalar product between two functions can be defined more
generally with a weight function w(x),

(f, g) =

∫ b

a

dx f ∗(x)g(x)w(x). (6.5)

The question of orthogonality between functions can thus only be answered
with respect to a certain definition of the scalar product. For example,
Chebyshev polynomials, see e.g. Boyd (2000), are othogonal with respect
to a scalar product with weight function w(x) = (1− x2)−1/2.

Other notations for the scalar product that are often found in the
literature are ⟨f, g⟩ or ⟨f |g⟩. The latter is particularly common in the
physics literature, in particular in quantum mechanics.

41

6.3 Basis functions

Let us now return to the series expansion,

fN(x) =
N∑

n=1

anφn(x). (6.6)

The functions φn(x) are called basis functions. A necessary property of
the basis functions is their linear independence. The functions are linearly
independent if none of the basis functions themselves can be written as a
linear combination of the others, i.e. in the form of the series expansion
Eq. (6.6), of the other basis functions. A consequence is that

N∑
n=1

anφn(x) = 0 (6.7)

if and only if all an = 0.
Linearly independent elements form a basis. This basis is called complete

if all relevant functions (= elements of the underlying vector space) can be
represented by the series expansion (6.6). (Proofs of the completeness of basis
functions are complex and outside the scope of these notes.) The coefficients
an are called coordinates or coefficients. The number of basis functions or
coordinates N is called the dimension of the vector space.

Note: A vector space is a set on which the operations of addition and
scalar multiplication are defined with the usual properties, such as the
existence of neutral and inverse elements and associative, commutative
and distributive laws. If this space is defined on functions, it is also
referred to as a function space. If there is also an inner product such as
Eq. (6.4), then we speak of a Hilbert space.

6.3.1 Orthogonality

Particularly useful basis functions are orthogonal. Using the scalar product,
we can now define orthogonality for these functions. Two functions f and g
are orthogonal if the scalar product vanishes, (f, g) = 0. A set of mutually
orthogonal basis functions satisfies

(φn, φm) = νnδnm, (6.8)

42

where δnm is the Kronecker-δ. For νn ≡ (φn, φn) = 1 the basis is called
orthonormal.

Orthogonality is useful because it directly allows us to obtain the coeffi-
cients of the series expansion (6.6):

(φn, fN) =
N∑
i=1

ai(φn, φi) =
N∑
i=1

aiνiδni = anνn (6.9)

which yields the coefficients as

an =
(φn, fN)

(φn, φn)
. (6.10)

The coefficients are given by the projection (the scalar product) of the function
onto the basis vectors. Remember that the following also applies to Cartesian
vectors: an = a⃗ · ên. (The normalization factor can be omitted here because
ên · ên = 1, i.e. the Cartesian basis vectors are orthonormal!) The coefficient
given by Eq. (6.10) can be thought of as coordinates of the function, similar
to the coordinates in Cartesian space.

Note: A useful identity for an expansion into orthogonal bases is Parseval’s
theorem. Because scalar products between different basis functions vanish,
the square (or power) of a series expansion is given by

(fN , fN) =
N∑

n=1

|an|2νn, (6.11)

or for orthonormal basis functions

(fN , fN) =
N∑

n=1

|an|2. (6.12)

6.3.2 Fourier basis

An important set of basis functions is the Fourier basis,

φn(x) = exp (iqnx) , (6.13)

on the interval x ∈ [0, L] with qn = 2πn/L and n ∈ Z. The Fourier basis is
periodic on this interval and is shown in Fig. 6.1. It can easily be shown that

(φn, φm) = Lδnm, (6.14)

43

0.2 0.4 0.6 0.8 1.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

n=0 n=1 n=2 n=4

Figure 6.1: Real part of the Fourier basis functions, Eq. (6.13), for n = 1, 2, 3, 4.
The higher order basis functions oscillate with a smaller period and represent
higher frequencies
.

so that the Fourier basis is orthogonal. The coefficients an of the Fourier
series,

f∞(x) =
∞∑

n=−∞

anφn(x), (6.15)

can thus be obtained as

an =
1

L
(φn, f∞) =

1

L

∫ L

0

dx f∞(x) exp (−iqnx) . (6.16)

This is the well-known formula for the coefficients of the Fourier series.

Note: Conceptually, the Fourier basis describes different frequency com-
ponents, while the basis of the finite elements described in the next section
describes spatial localization.

For a real-valued function with f∞(x) ≡ f ∗
∞(x), we get

∞∑
n=−∞

anφn(x) ≡
∞∑

n=−∞

a∗nφ−n(x) (6.17)

44

because φ∗
n(x) = φ−n(x). This means an = a∗−n is a necessary condition to

obtain a real-valued f(x). This has implications for truncating the Fourier
series to a finite number of terms N . In particular, we need to truncate
symmetrically, i.e.

fN(x) =

(N−1)/2∑
n=−(N−1)/2

an exp (iqnx) (6.18)

with odd N .

6.3.3 Finite elements

Another basis set that is important for numerical analysis is the finite-element
basis. In contrast to the Fourier basis, which only becomes zero at isolated
points in the entire domain, the finite element basis is localized in space and
is zero for large areas of the domain. It thus divides the domain into spatial
sections.

In its simplest form, the basis consists of localized piece-wise linear func-
tions, the “tent” functions,

φn(x) =

x−xn−1

xn−xn−1
for x ∈ [xn−1, xn]

xn+1−x

xn+1−xn
for x ∈ [xn, xn+1]

0 else

(6.19)

Here, the xn are the nodes (also known as grid points) between which the
tents are spanned. The functions are constructed in such a way that the
maximum value is 1 and

∫ L

0
dxφn(x) = (xn+1 − xn−1)/2. This basis is the

simplest form of the finite element basis and is shown in Fig. 6.2. Higher
order polynomials can be used for greater accuracy.

An important remark at this point is that the basis of the finite elements
not is orthogonal. The scalar product does not vanish for the nearest neighbors.
This is the case because two neighbors have an overlapping rising and falling
edge. One obtains

Mnn ≡ (φn, φn) =
1

3
(xn+1 − xn−1) (6.20)

Mn,n+1 ≡ (φn, φn+1) =
1

6
(xn+1 − xn) (6.21)

Mnm ≡ (φn, φm) = 0 for |n−m| > 1 (6.22)

for the scalar products.

45

-0.5 0.0 0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

Figure 6.2: The base of the finite elements in its simplest, linear incarnation.
Each basis function is a “marquee” that runs over a certain interval between
0 and 1 and back again, see also Eq. (6.19).

Nevertheless, we can use these relations to determine the coefficients of a
series expansion,

fN(x) =
N−1∑
n=0

anφn(x), (6.23)

which yields

(φn, fN(x)) = an−1(φn, φn−1) + an(φn, φn) + an+1(φn, φn+1)

=Mn,n−1an−1 +Mnnan +Mn,n+1an+1.
(6.24)

We can express this as

(φn, fN(x)) = [M · a⃗]n (6.25)

where [v⃗]n = vn denotes the nth component of the vector enclosed by the two
square brackets [·]n. The matrix M is sparse. For an orthogonal basis, such
as the Fourier basis of section 6.3.2, this matrix is diagonal. For a basis with
identical distances xn+1 − xn = 1 of the grid points xn, the matrix has the
following form

M =

2/3 1/6 0 0 0 0 0 · · ·
1/6 2/3 1/6 0 0 0 0 · · ·
0 1/6 2/3 1/6 0 0 0 · · ·
0 0 1/6 2/3 1/6 0 · · ·
0 0 0 1/6 2/3 1/6 · · ·
0 0 0 0 1/6 2/3 · · ·
...

...
...

...
...

...
...

. . .

. (6.26)

To find the coefficients an, we must solve a (sparse) linear system of equations.
The matrix M is also called the mass matrix.

46

Note: Basis sets that are different from zero only at individual points
are called spectral basis sets. In particular, the Fourier basis is a spectral
basis set for periodic functions. The orthogonal polynomials are important
spectral basis sets that are also used in numerical analysis. For example,
Chebyshev polynomials are good basis sets for non-periodic functions
defined on closed intervals. The finite-element basis is not a spectral basis.

47

Chapter 7

Approximation and
interpolation

Context: We now apply the idea of basis functions to approximate
functions. To do this, we return to the concept of the residual. The goal of
function approximation is that the approximated function minimizes the
residual. Building on these ideas, we will then discuss the approximation
of differential equations in the next chapter.

7.1 Residual

In the previous section, we described how a series expansion can be constructed
using basis functions. A typical series expansion contains a finite number of
elements N and has the form

fN(x) =
N∑

n=1

anφn(x), (7.1)

where the φn(x) are the basis functions introduced in the previous chapter.
We now want to approach the question of how we can approximate an

arbitrary function f(x) via such a basis function expansion. We define the
residual

R(x) = fN(x)− f(x), (7.2)

which vanishes at every point x if fN(x) ≡ f(x). For an approximation we
want to “minimize” this residual. (Minimizing in this context means to bring
it as close to zero as possible.) We are looking for the coefficients an of the
series, which approximate the function f(x) in the sense of minimizing the
residual.

48

At this point, it should be noted that the basis functions must be defined
on the same support as the target function f(x). For the approximation of a
periodic function f(x) we need a periodic basis.

7.2 Collocation

The first minimization strategy introduced here is collocation. This method
requires that the residual disappears at selected collocation points yn,

R(yn) = 0 or fN(yn) = f(yn). (7.3)

The number of collocation points must correspond to the number of coefficients
in the series expansion. The choice of ideal collocation points yn itself is
non-trivial, and we will only discuss specific cases here.

As a first example, we discuss an expansion into N finite elements. As
collocation points we choose the nodal points of the basis, yn = xn. At these
sampling points, only one of the basis functions is non-zero, φn(yn) = 1 and
φn(yk) = 0 if n ̸= k. This means that the condition

R(yn) = 0 (7.4)

trivially leads to
an = f(yn). (7.5)

The coefficients an are therefore the function values at the collocation points.
The approximation is a piece-wise linear function between the function values
of f(x).

As a second example, we discuss a Fourier series with corresponding N
Fourier basis functions,

φn(x) = exp (iqnx) . (7.6)

In the context of a collocation method, we require that the residual vanishes
on N equidistant points, R(yn) = 0 with

yn = nL/N, (7.7)

where L/N is the grid spacing. The collocation condition is

(N−1)/2∑
k=−(N−1)/2

ak exp (iqkyn) =

(N−1)/2∑
k=−(N−1)/2

ak exp

(
i2π

kn

N

)
= f(yn). (7.8)

Equations (7.8) can now be solved for ak. We use the fact that for equidistant
collocation points the Fourier matrix

Wkn = exp(i2πkn/N) =
[
exp(i2π/N)

]kn
(7.9)

49

is unitary (except for a constant factor), i.e. its inverse is given by the adjoint:

N−1∑
n=0

WknW
∗
nl =

N−1∑
n=0

[
exp(i2π/N)

]n(k−l)
= Nδkl (7.10)

We can therefore multiply Eq. (7.8) by W ∗
nl and sum over n. This results in∑

n

∑
k

WknW
∗
nlak =

∑
k

Nakδkl = Nal. (7.11)

This means that the coefficients can be expressed as

al =
1

N

N∑
n=0

f

(
nL

N

)
exp

(
−i2π ln

N

)
=

1

N

N∑
n=0

f(yn) exp (−iqlyn) (7.12)

for −(N − 1) ≤ l ≤ N − 1. This is the discrete Fourier transform (DFT) of
the function f(yn) discretized on the collocation points.

As a simple example, we show the approximation of the example function
f(x) = sin(2πx)3+cos(6π(x2−1/2)) using the Fourier basis and finite elements.
Figure 7.2 shows this approximation for 2N + 1 = 5 and 2N + 1 = 11 basis
functions with equidistant collocation points.

The figure shows that all approximations run exactly through the collo-
cation points, as required by the collocation condition. The two approaches
interpolate differently between the collocation points. Finite elements lead to a
linear interpolation between the points. The Fourier basis is more complicated.
The curve between the collocation points is called Fourier interpolation.

7.3 Weighted residuals

We would now like to generalize the collocation method. To do this, we
introduce the concept of a test function. Instead of requiring that the residual
vanishes at individual points, we require that the scalar product

(v,R) = 0 (7.13)

with some function v(x) disappears. If Eq. (7.13) vanishes for any test
function v(x), then the “weak” formulation Eq. (7.13) is identical to the
strong formulation R(x) = 0. Equation (7.13) is called a “weak” formulation
because the condition is only fulfilled in the integral sense. In particular, it is
shown later that this weak formulation leads to a weak solution, which cannot
satisfy the original (strong) PDGL at every point. The condition (7.13) is

50

0.2 0.4 0.6 0.8 1.0

-2.0

-1.5

-1.0

-0.5

0.5

1.0

f(x)

Fourier-Basis

Finite Elemente

0.2 0.4 0.6 0.8 1.0

-2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

f(x)

Fourier-Basis

Finite Elemente

Figure 7.1: Approximation of the periodic function f(x) = sin(2πx)3 +
cos(6π(x2−1/2)) on the interval [0, 1] with a Fourier basis and finite elements.
The function was approximated with 5 (top) and 11 (bottom) basis functions
using the collocation method. The round dots show the collocation points.
Both approximations run exactly through these collocation points. (The right
collocation point is identical to the left one due to the periodicity). The
approximation with N = 5 basis functions does not capture the two right
oscillations of the target function f(x) in both cases
.

51

often called a weighted residual, because the residual is weighted by the test
function.

A special set of test functions leads directly to the collocation method.
We choose the set of N test functions

vn(x) = δ(x− yn) (7.14)

where δ(x) is the Dirac δ function and yn the collocation points. The condition
(vn, R) = 0 for all n ∈ [0, N − 1] leads directly to the collocation condition
R(yx) = 0.

Note: The Dirac δ function should be familiar from lectures on signal
processing. The most important property of this function is the filter
property, ∫ ∞

−∞
dx f(x)δ(x− x0) = f(x0), (7.15)

i.e. the integral over the product of the δ function gives the function value
at which the argument of the δ function disappears. All other properties
follow from this, e.g. ∫

dx δ(x) = Θ(x), (7.16)

where θ(x) is the (Heaviside) step function.

7.4 Galerkin method

The Galerkin method is based on the idea of using the basis functions φn of
the series expansion as test functions. This leads to the N conditions

(φn, R) = 0, (7.17)

which can be written as
(φn, fN) = (φn, f). (7.18)

For an orthogonal set of basis functions, this yields

an =
(φn, f)

(φn, φn)
. (7.19)

This equation has already been discussed in section 6.3. For a non-orthogonal
basis set, e.g. the basis of the finite elements, the Galerkin condition yields a

52

system of linear equations,

N∑
m=1

(φn, φm)am = (φn, f), (7.20)

where the matrix Mnm = (φn, φm) is sparse for the finite elements.
Let us now return to our example function f(x) = sin(2πx)3+cos(6π(x2−

1/2)). Figure 7.2 shows the approximation of this function with Fourier and
finite element basis sets and the Galerkin method. There are no collocation
points and the approximation using finite elements does not exactly match
the function to be approximated at the interpolation points. The function is
only approximated in the integral sense.

Note: The Galerkin condition (see also Eq. (7.17))

(φn, R) = 0, (7.21)

means that the residual is orthogonal to all basis functions. In other
words, the residual can only contain contributions to the function that
cannot be described with the given basis set. This implies that we can
systematically improve our solution by extending the basis set.

7.5 Least squares

An alternative approach to approximation is to minimize the square of the
residual, (R,R), also knows as a least squares approach. For a general series
expansion with N basis functions, we obtain

(R,R) = (f, f) + (fN , fN)− (fN , f)− (f, fN)

= (f, f) +
N∑

n=1

N∑
m=1

a∗nam(φn, φm)−
N∑

n=1

a∗n(φn, f)−
N∑

n=1

an(f, φn).

(7.22)

This error square is minimized if

∂(R,R)

∂ak
=

N∑
n=1

a∗n(φn, φk)− (f, φk) = 0 (7.23)

and
∂(R,R)

∂a∗k
=

N∑
n=1

an(φk, φn)− (φk, f) = 0. (7.24)

53

0.2 0.4 0.6 0.8 1.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

f(x)

Fourier-Basis

Finite Elemente

0.2 0.4 0.6 0.8 1.0

-2.0

-1.5

-1.0

-0.5

0.5

1.0

f(x)

Fourier-Basis

Finite Elemente

Figure 7.2: Approximation of the periodic function f(x) = sin(2πx)3 +
cos(6π(x2−1/2)) on the interval [0, 1] with a Fourier basis and finite elements.
The figure shows an approximation 5 (top) and 11 (bottom) basis functions.
The coefficients were determined using the Galerkin method. The approxima-
tion with 5 basis functions does not capture the two right oscillations of the
target function f(x) in both cases.

54

This expression is identical to Eq. (7.20) of the Galerkin method.

55

Chapter 8

Finite elements in one
dimension

Context: In this chapter, some properties of finite elements are discussed
using one-dimensional examples. In particular, we show how second-
order PDEs can be discretized using linear elements and how boundary
conditions can be incorporated into the finite elements.

8.1 Differentiability of the Basis Functions

The simplest case of a basis of finite elements in one dimension has already
been introduced in the previous chapters. The basis functions are “tent”
or “hat” functions, each of which is maximal (= 1) on one node and then
drops linearly to the two neighboring nodes. In contrast to the Fourier basis,
this basis is not differentiable (in the classical sense, not even once). This
actually means that we cannot naively use this basis as a series expansion
for the ansatz function to solve a second-order (or even first-order) PDE
in which derivatives occur. We will now show that a weak solution can be
obtained in the context of a weak formulation that does not have to meet
these requirements for differentiability. This means that these basis functions
can be used for second-order PDEs after all.

As an example, we continue to consider the one-dimensional Poisson
equation with the residual

R(x) =
d2Φ

dx2
+
ρ(x)

ε
. (8.1)

In the weighted residual method, the scalar product of the residual with a
test function v(x) must vanish, (v,R) = 0. In this integral formulation, the

56

rules of partial integration can now be used to transfer a derivative to the
test function. This yields

(v(x), R(x)) =

∫ b

a

dx v(x)

(
d2Φ

dx2
+
ρ(x)

ε

)
(8.2)

=

∫ b

a

dx

[
d

dx

(
v(x)

dΦ

dx

)
− dv

dx

dΦ

dx

]
+

∫ b

a

dx v(x)
ρ(x)

ε
(8.3)

= v(x)
dΦ

dx

∣∣∣∣b
a

−
∫ b

a

dx
dv

dx

dΦ

dx
+

∫ b

a

dx v(x)
ρ(x)

ε
. (8.4)

Equation (8.4) now contains no second derivative. This means that both the
test function v(x) and the solution Φ(x) need only be differentiable once for
all x. We can therefore use linear basis functions to discretize a second-order
PDE. In the following, we will denote the simulation domain as Ω. In the
one-dimensional case discussed here, Ω = [a, b].

Note: The linear basis functions are not even simply differentiable in the
classical sense, because the left- and right-sided difference quotient differs
at the kinks of the function. However, the so-called weak derivative f ′(x)
of the function f(x) exists if∫

Ω

dx v(x)f ′(x) = −
∫
Ω

dx v′(x)f(x) (8.5)

for arbitrary (strongly differentiable) test functions v(x). The weak deriva-
tive is not unique; for example, at the kinks of the tent functions, you can
assume 0 (or any other value) as the weak derivative. This works because
this single point makes no contribution to the integral in Eq. (8.5). Just
as the weak derivative is not unique, the weak solution of a differential
equation is not unique.

In this learning material, we will not systematically distinguish between
strong and weak derivatives but implicitly assume that we are operat-
ing with the weak derivative. We often perform intuitive calculations
with weak derivatives, such as taking a step function as the derivative
of the finite tents and a Dirac δ-function as the derivative of the step
function. This mathematically imprecise use of derivatives is common in
engineering and physics and usually leads to correct results. Spaces of
weakly differentiable functions are called Sobolev spaces. Sobolev spaces
are always Hilbert spaces, since a scalar product is always needed for weak
differentiability, see Eq. (8.5).

57

We have thus broadened our understanding of the solution of a PDE.
While for the strong solution R(x) ≡ 0, Eq. (8.1), the function Φ(x) must be
twice strongly differentiable, for the weak solution (v,R) ≡ 0, Eq. (8.4), this
function must only be once weakly differentiable. Of course, equation (8.4)
must be fulfilled here for all singly- differentiable test functions v(x).

Note: In the collocation method, the “strong” requirement of differen-
tiability twice is not removed. This can be seen, for example, from the
fact that the Dirac δ as a test function for the collocation method is not
even differentiable in the weak sense. That is, the test functions of the
collocation method are not in the set of test functions for which (v,R) ≡ 0
is required in the sense of the weak solution. This is the reason why
the weighted residual method, and specifically the Galerkin method, has
become so widespread.

8.2 Galerkin method

In the context of the weak formulation Eq. (8.4), the Galerkin method is now
applied. We write again

Φ(x) ≈ ΦN(x) =
N∑

n=0

anφn(x) (8.6)

as a (finite) series expansion with our finite elements, the tent functions φn(x).
We first consider the case in which the test function vanishes on the boundary
of the domain Ω, i.e. at x = a and x = b; thus the first term in Eq. (8.4)
vanishes. This term vanishes, for example, for periodic domains. (However,
this term becomes important again when we talk about boundary conditions
for non-periodic domains.)

The Galerkin condition thus becomes

(φk, RN) = −
∑
n

an

∫
Ω

dx
dφk

dx

dφn

dx
+

1

ε

∫
Ω

dxφk(x)ρ(x) = 0 (8.7)

with unknown an. The integrals in Eq. (8.7) are merely numbers; the equation
is thus a system of coupled linear equations. With

Kkn =

∫
Ω

dx
dφk

dx

dφn

dx
andfk =

1

ε

∫
Ω

dxφk(x)ρ(x) (8.8)

58

we thus obtain ∑
n

Kknan = fk, (8.9)

or in dyadic (matrix-vector) notation

K · a⃗ = f⃗ . (8.10)

Thus, the differential equation is transformed into an algebraic equation
that can be solved numerically. The matrix K is called the system matrix
or stiffness matrix. (The latter term comes from the application of finite

elements in the context of structural mechanics.) The term f⃗ is often referred
to as the “right hand side” (often abbreviated as “rhs”) or load vector (again
from structural mechanics).

Note: In structural mechanics, which deals with the deformation of solids,
K is something like a spring constant, f⃗ a force and a⃗ the displacements of
the nodes, i.e. the distance to the undeformed state. This makes Eq. (8.10)
something like the generalization of a spring law, Hooke’s law. For this
reason, the symbols K and f⃗ are traditionally used. Structural mechanics
is more complicated than most other numerical applications because the
area on which the constitutive equations were discretized changes due to
the deformation itself. This automatically leads to non-linear equations,
so-called geometric non-linearities. In this case, K itself depends on a⃗.

We can now calculate the elements of the matrix K directly. For the finite
element basis, the following applies

dφn(x)

dx
=

1

xn−xn−1
for x ∈ [xn−1, xn]

− 1
xn+1−xn

for x ∈ [xn, xn+1]

0 otherwise

(8.11)

and thus

Knn =
1

xn − xn−1

+
1

xn+1 − xn
(8.12)

Kn,n+1 = − 1

xn+1 − xn
(8.13)

and Kkn = 0 for |n− k| > 1. The matrix K is therefore sparse, symmetrical
and almost tridiagonal.

59

Example: For equidistant nodes with spacing ∆x = xn+1 − xn on a
periodic domain, for example, we obtain 6 nodes (N = 5):

K =
1

∆x

2 −1 0 0 0 −1
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
−1 0 0 0 −1 2

(8.14)

Note that the −1s in the upper right and lower left corners (K0N and KN0)
appear due to periodicity. The matrix is therefore not purely tridiagonal.
The right-hand side fk depends on the specific choice of the source term,
i.e. the charge density ρ(x), and looks as follows:

f⃗ =

(φ0(x), ρ(x))/ε
(φ1(x), ρ(x))/ε
(φ2(x), ρ(x))/ε
(φ3(x), ρ(x))/ε
(φ4(x), ρ(x))/ε
(φ5(x), ρ(x))/ε

(8.15)

In the course of this learning material, it has been completely neglected
so far that boundary conditions are always needed to solve differential
equations. Even this periodic case is not complete. In the Fourier repre-
sentation, n = 0 (with wave vector q0 = 0) represents the mean value of
the Fourier series. The solution of the Poisson equation does not specify
this mean value and it must therefore be given as an additional condition.

In the context of discretization using finite elements, this manifests
itself in the fact that the system matrix K, as written in e.g. Eq. (8.14), is
not regular (also invertible or nonsingular). This can be seen, for example,
from the fact that the determinant of K vanishes. In other words, the
linear equations are not linearly independent. In the case discussed here,
the rank of the matrix, i.e. the number of linearly independent rows, is
exactly one less than its dimension. We can therefore remove one of these
equations (or rows) and introduce the corresponding mean value condition
instead. For the periodic case, this is∫

Ω

dxΦN(x) =
∑
n

an

∫
Ω

dxφn(x) =
∑
n

an∆x = 0. (8.16)

60

The regular system matrix then looks like this,

K =
1

∆x

2 −1 0 0 0 −1
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
1 1 1 1 1 1

(8.17)

whereby fN = 0 must now also apply. The right-hand side thus becomes

f⃗ =

(φ0(x), ρ(x))/ε
(φ1(x), ρ(x))/ε
(φ2(x), ρ(x))/ε
(φ3(x), ρ(x))/ε
(φ4(x), ρ(x))/ε

0

. (8.18)

The last row corresponds to the mean value condition Eq. (8.16), but any
row could have been replaced by this condition.

8.3 Boundary Conditions

The mean value condition of the previous example is a special case of a
boundary condition. In most cases, problems are treated on finite domains
Ω in which either the function value Φ(x) or the derivative dΦ/ dx on the
boundary ∂Ω of the domain is given. (In our one-dimensional case, ∂Ω =
{a, b}.) The first case is called a Dirichlet boundary condition, the second
case is called a Neumann boundary condition. For differential equations of
higher order than two, even higher derivatives could of course occur on the
boundary. Combinations of Dirichlet and Neumann boundary conditions are
also possible. Here we will only discuss pure Dirichlet and pure Neumann
boundary conditions.

8.3.1 Dirichlet Boundary Conditions

In the one-dimensional case discussed here, the Dirichlet boundary conditions
are

Φ(a) ≈ ΦN(a) = Φa and Φ(b) ≈ ΦN(b) = Φb. (8.19)

61

These conditions lead directly to a0 = Φa and aN = Φb. That is, the Dirichlet
conditions directly fix the corresponding coefficients of the series expansion.
Note that the conditions (φ0, R) = 0 and (φN , R) = 0 have been implicitly
taken from the system of equations. However, the basis functions φ0(x) and
φN(x) still appear in the series expansion ΦN(x).

Example: In our example, the system matrix with Dirichlet boundary
conditions then becomes

K =
1

∆x

1 0 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 0 1

(8.20)

and f0 = Φa/∆x and fN = Φb/∆x:

f⃗ =

Φa/∆x
(φ1(x), ρ(x))/ε
(φ2(x), ρ(x))/ε
(φ3(x), ρ(x))/ε
(φ4(x), ρ(x))/ε

Φb/∆x

(8.21)

This matrix K is regular.
The ∆x only appears on the right side f0 and fN because it is a

prefactor in the system matrix. In an implementation, one would push
∆x completely to the right side and it would thus completely disappear
from the first and last line.

8.3.2 Neumann boundary conditions

The Neumann boundary conditions are

dΦ

dx

∣∣∣∣
a

≈ dΦN

dx

∣∣∣∣
a

= Φ′
a and

dΦ

dx

∣∣∣∣
b

≈ dΦN

dx

∣∣∣∣
b

= Φ′
b. (8.22)

To include these conditions in our algebraic equation, we can no longer neglect
the first term in Eq. (8.4). This term is not relevant for the Dirichlet boundary
conditions, since the basis functions φ1(x) to φN−1(x) vanish on the boundary

62

x = a, b. The basis functions φ0(x) and φN(x) do not vanish, but in the
Dirichlet case they no longer appear in our set of test functions.

However, we now have to determine how to interpret the basis functions
φ0(x) and φN(x), which now extend beyond the boundary of the domain. A
natural interpretation is to consider only the half of the “tent” that remains
in the domain.

The Galerkin approach thus leads to

(φk, RN) = φk(x)
dΦ

dx

∣∣∣∣b
a

−
∑
n

an

∫
Ω

dx
dφk

dx

dφn

dx
+

1

ε
(φk(x), ρ(x)) = 0. (8.23)

The additional term on the left-hand side only plays a role at k = 0 and
k = N . We obtain

(φ0, RN) = −Φ′
a −

∑
n

K0nan +
1

ε
(φ0(x), ρ(x)) (8.24)

with

K00 =
1

x1 − x0
and K01 = − 1

x1 − x0
(8.25)

and all other K0n = 0. We can write this again (see Eq. (8.9)) with

f0 =
1

ε
(φ0(x), ρ(x))− Φ′

a (8.26)

A corresponding set of equations applies to the right boundary with k = N .

Example: In our example, the system matrix for two Neumann boundary
conditions then becomes

K =
1

∆x

1 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 1

. (8.27)

Note that this system matrix is slightly different from the one for Dirichlet
boundary conditions, Eq. This matrix is not regular and thus the problem
with two Neumann boundary conditions is indeterminate. The reason for
this is the same as in the periodic case: the Neumann boundary conditions
do not fix the absolute value (mean) of the potential Φ. So you either

63

need a Dirichlet boundary condition (left or right) or again the fixing of
the mean value.

The right side becomes:

f⃗ =

(φ0(x), ρ(x))/ε− Φ′
a

(φ1(x), ρ(x))/ε
(φ2(x), ρ(x))/ε
(φ3(x), ρ(x))/ε
(φ4(x), ρ(x))/ε

(φ5(x), ρ(x))/ε+ Φ′
b

. (8.28)

Note that for the evaluation of (φ0, ρ) and (φ5, ρ) only half of the corre-
sponding tent needs to be integrated.

64

Chapter 9

Assembly

Context: Deriving the discretized equations in matrix form can be tedious.
This chapter describes how to derive them from the properties of the
individual elements. This leads to the concept of a per-element stiffness
matrix. The global system matrix can be constructing by assembling
the individual per-element matrices. This splits the complexity of the
discretization into two steps: Determining the element matrices and
assembling them.

9.1 Shape functions

The finite element method is often formulated not with the help of basis
functions but with the help of so-called shape functions. The reason for
this is that the shape functions provide a more intuitive approach to the
interpolation rule behind the finite elements, thus allowing for easier extension
to multiple dimensions. In the one-dimensional case, the shape functions
may appear more complicated than the approach outlined above, but for the
formulation of the finite element method in several dimensions, this will be
the simpler approach.

We first have to talk about what an element is. The tent functions lead
to a linear interpolation between the nodes. The areas between the nodes
are called elements. In one dimension, these are one-dimensional intervals, in
higher dimensions the elements can take on complex forms. A linear basis
function, as introduced here, is centered on the node and non-zero on two
elements.

Instead of defining the interpolation in terms of the basis functions, we
can also demand that within an element the function values on the knots
be interpolated in a given form, here initially linearly. For the n-th element

65

between the nodes n and n + 1, i.e. x ∈ Ω(n) = [xn, xn+1], only the basis
functions φn and φn+1 contribute, since all other basis functions vanish on
this interval. Here, Ω(n) denotes the domain of the nth element. Thus, in this
element, the function ΦN(x) has the form

ϕ(n)(x) =anφn(x) + an+1φn+1(x)

=an
xn+1 − x

xn+1 − xn
+ an+1

x− xn
xn+1 − xn

=anN
(n)
1 (ξ(n)(x)) + an+1N

(n)
2 (ξ(n)(x)),

(9.1)

with ξ(n)(x) = (x− xn)/(xn+1 − xn) and x ∈ Ω(n). Here and in the following,
superscripts x(n) denote elements and subscripts xn denote nodes. The
functions

N
(n)
1 (ξ) = 1− ξ and N

(n)
2 (ξ) = ξ (9.2)

with ξ ∈ [0, 1] are called shape functions and ξ(n)(x) is a rescaling function
that becomes 0 at the left edge of the nth element and 1 at the right edge of
the element. This decouples the size of the element from the interpolation
rule (the “shape” of the element).

Note: There is exactly one element less than there are nodes in 1D, which
we have so far also denoted by the index n. In the one-dimensional case,
the relationship between the global node index and the element index
is trivial; in higher dimensions, keeping track of the indices becomes
complicated. The combination of the local index of the node within an
element (here 1 for the left node and 2 for the right node) and the element
index yields the global node index (here n). We will use capital Latin
letters I, J,K to indicate local node indices.

Note: The interpolation rule depends on the element index n because
the elements can have different sizes. There is a shape function for each
node of the element, which are referred to here as N

(n)
1 on the left and

N
(n)
2 on the right. The set of shape functions of an element determine the

element type. Equations (9.2) define a linear element. In principle, the
element types can be different for each element. However, for the basis
set we have used so far, the left and right shape functions (and thus the
element type) are identical for all elements.

66

Note: The basis functions φn(x) are defined globally, i.e. they live on
the entire simulation domain Ω (but vanish in sections of it). The shape

function N
(n)
I (x) is defined only on the individual element n, i.e. they live

on Ωn. Here I denotes the node within the element, i.e. it is a local note
index. However, we can of course express the basis functions using the
shape functions by collecting the functions that have the corresponding
expansion coefficient an as a prefactor. In the one-dimensional case, we
obtain

φn(x) = N
(n)
1 (x) +N

(n−1)
2 (x) (9.3)

with the compact notation N
(n)
I (x) = N

(n)
I (ξ(n)(x)). Equation (9.3) is

to be interpreted such that the shape functions vanish if the argument
is not in the element, i.e., for x ̸∈ Ω(n). In two or three dimensions, it
is usually easier to work with the shape functions than with the basis
functions. Conversely, the shape functions are ultimately the part of the
basis functions that lives on the elements.

Shape functions are useful because they can be used to write the ap-
proximated solution as a sum over elements, i.e. in the one-dimensional
case

ΦN(x) =
N∑

n=1

ϕ(n)(x) =
N∑

n=1

(
anN

(n)
1 (x) + an+1N

(n)
2 (x)

)
. (9.4)

For a general PDE, R = LuN − f , the Galerkin condition becomes

(φk, R) = (N
(k)
1 +N

(k−1)
2 , R) = 0 (9.5)

with

(N
(k)
I , R) =

N∑
n=1

(
an(N

(k)
I ,LN (n)

1) + an+1(N
(k)
I ,LN (n)

2)
)
− (N

(k)
I , f) (9.6)

=ak(N
(k)
I ,LN (k)

1) + ak+1(N
(k)
I ,LN (k)

2)− (N
(k)
I , f) (9.7)

where the sum in Eq. (9.6) disappears because the shape functions on different
elements are trivially orthogonal. (The shape function itself is nonzero only
on a single element.) Here and in the following, capital letters I denote local
node indices, while small letters i denote global node indices.

Motivated by this equation, we define an element matrix (or element
stiffness matrix) for element n as

K
(n)
IJ = (N

(n)
I ,LN (n)

J) (9.8)

67

and
f
(n)
I = (N

(n)
I , f). (9.9)

In this notation, we obtain

(N
(n)
I , R) =

2∑
J=1

K
(n)
IJ a

(n)
J − f

(n)
I (9.10)

where J runs over the nodes within the element n and thus (in one dimension)
n+ J − 1 is the global node index of the corresponding left or right node, i.e.
a
(n)
J = an+J−1. The Galerkin condition Eq. (9.5) thus becomes

0 = (φk, R) =(N1, R) + (N2, R)

=
2∑

J=1

K
(k)
1J a

(k)
J − f

(k)
1 +

2∑
J=1

K
(k−1)
2J a

(k−1)
J − f

(k−1)
2

(9.11)

This condition corresponds to a row of the system matrix and the right-hand
side. Row k of the system matrix, which corresponds to node k, thus has a
contribution from element k (whose left node is node k) and element k − 1
(whose right node is node k). This process of constructing or “assembling”
the global system matrix from the element matrices is often referred to as
assembly.

Note: The element matrix is constructed by evaluating

(N
(n)
I , R). (9.12)

Since the shape function is nonzero only on element n, we can restrict the
integration inside the scalar product to just this element.

9.2 Assembling the system matrix

As an example, we reformulate the example problem (Poisson equation) here
again with shape functions. This is a process that requires three steps:

1. Element matrix and load vector: Since all elements are identical, the
individual element matrices are also identical. First, we apply the
partial integration to reduce the condition of differentiability. We get
the expression

K
(n)
IJ =

(
N

(n)
I ,

d2N
(n)
J

dx2

)
= −

(
dN

(n)
I

dx
,
dN

(n)
J

dx

)
, (9.13)

68

which only contains first derivatives of the shape functions. These deriva-
tives are constants because the shape functions are linear, Eq. (9.2),

dN
(n)
1

dx
= − 1

∆x(n)
(9.14)

dN
(n)
2

dx
=

1

∆x(n)
, (9.15)

where ∆x(n) is the size of element n. This gives the element stiffness
matrix

K(n) =
1

∆x(n)

(
−1 1
1 −1

)
, (9.16)

which is identical for all elements if they have the same size and use the
same shape functions. The right-hand side for the elements becomes

f⃗ (n) =

(
(N

(n)
1 , ρ)/ε

(N
(n)
2 , ρ)/ε

)
. (9.17)

This right-hand side can be different for the different elements if ρ varies
spatially.

2. Assembly: The rules for assembling the system matrix follow from the
Galerkin condition, Eq. (9.11). To do this, the 2 × 2 element matrix
must be expanded to the 6× 6 system matrix and summed: rows and
columns of the element matrix correspond to element nodes and these
must now be mapped to the corresponding global nodes in the system
matrix. In our one-dimensional case, this is trivial. We get

K∆x =

−1 1 0 0 0 0
1 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

︸ ︷︷ ︸

Elementn=1

+

0 0 0 0 0 0
0 −1 1 0 0 0
0 1 −1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

︸ ︷︷ ︸

Elementn=2

+ · · ·

(9.18)
and thus

K =
1

∆x

−1 1 0 0 0 0
1 −2 1 0 0 0
0 1 −2 1 0 0
0 0 1 −2 1 0
0 0 0 1 −2 1
0 0 0 0 1 −1

. (9.19)

69

where we have assumed that all elements have the same size ∆x = ∆x(n).
The advantage of the formulation with shape functions is that we only
have to calculate the element matrix once for an element type, and then
you can simply assemble the system matrix from it. The assembly of
the right-hand side follows analogously, but is easier since it is a vector.

3. Boundary conditions: We have not yet discussed boundary conditions
in the context of the shape functions. Here, the rows of the system
matrix and the load vector must be replaced by the corresponding
boundary condition. The matrix K from Eq. (9.19) is singular without
the corresponding boundary conditions.

9.3 Nonuniform one-dimensional grids

Let us construct system matrix for a system consisting of three elements
with different sizes ∆x(1), ∆x(2) and ∆x(3). The element matrices for the
operator L = d2 / dx2 are given by Eq. (9.16). We simply sum the three
element matrices, yielding

K =

− 1

∆x(1)
1

∆x(1) 0 0
1

∆x(1) − 1
∆x(1) 0 0

0 0 0 0
0 0 0 0

+

0 0 0 0
0 − 1

∆x(2)
1

∆x(2) 0
0 1

∆x(2) − 1
∆x(2) 0

0 0 0 0

+

0 0 0 0
0 0 0 0
0 0 − 1

∆x(3)
1

∆x(3)

0 0 1
∆x(3) − 1

∆x(3)

=

− 1

∆x(1)
1

∆x(1) 0 0
1

∆x(1) − 1
∆x(1) − 1

∆x(2)
1

∆x(2) 0
0 1

∆x(2) − 1
∆x(2) − 1

∆x(3)
1

∆x(3)

0 0 1
∆x(3) − 1

∆x(3)

 .

(9.20)

This expression would have been more difficult to derive from using the basis
functions directly.

9.4 Element matrices

We have in this chapter discussed the discretization of the second derivative
L = d2 / dx2. The element matrix for zero and first derivatives in one-
dimensions with linear shape functions are summarized in Tab. 9.1. Deriving
the explicit expression in this table requires solving the integrals behind the
scalar products shown in the third column. Those integrals are at most over
quadratic functions and hence trivial to carry out.

70

Name Operator L KIJ K

Mass matrix 1 (NI , NJ) ∆x

(
1/3 1/6
1/6 1/3

)
d
dx

(
NI ,

dNJ

dx

) (
−1/2 1/2
−1/2 1/2

)

Laplacian matrix d2

dx2 −
(

dNI

dx
, dNJ

dx

)
1
∆x

(
−1 1
1 −1

)
Table 9.1: The element matrices K for the operator L for one-dimensional
grid with linear finite-element shape functions and an element size of ∆x.

9.5 Implementation

Example: As an example of a differential equation, we now discuss the
numerical solution of the (linearized) Poisson-Boltzmann (PB) equation.
For two identical species with opposite charge, the PB equation is given
by

∇2Φ = −c
∞

ε

[
q+ exp

(
− q+Φ

kBT

)
+ q− exp

(
− q−Φ

kBT

)]

=
2ρ0
ε

sinh

(
|e|Φ
kBT

) (9.21)

where ρ0 = |e|c∞ is a reference charge density and q+ = |e| and q− = −|e|
are the ionic charges of the two species. Since for small x we have
sinhx ≈ x, the linearized version of the PB equation is

∇2Φ = Φ/λ2 (9.22)

with the Debye length λ =
√
εkBT/(2|e|ρ0).

We here show how to implement the solution of the linearized Poisson-
Boltzmann equation with the residual

R = ∇2Φ− Φ/λ2 (9.23)

with the concepts described in this chapter. This equation employs two
operators, the Laplacian and the unit operator, which means each element

71

has a contribution from the Laplacian and mass matrices (see Tab. 9.1). The
overall element matrix of this differential equation is therefore given by

K(n) = K
(n)
Laplacian −K(n)

mass/λ
2. (9.24)

We implement these matrices as individual functions, that take the width ∆x
of each element as input:

1 def laplacian_1d(width):

2 """

3 Return the Laplacian element matrix for a linear 1D

4 element of width ‘width ‘.

5 """

6 return np.array([[-1, 1], [1, -1]]) / width

7

8 def mass_1d(width):

9 """

10 Returns the mass element matrix for a linear 1D

11 element of width ‘width ‘.

12 """

13 return np.array ([[2, 1], [1, 2]]) * width / 6

14

15 def pb_1d(width , lam):

16 """

17 Returns the Poisson -Boltzmann element matrix for a linear

18 1D element of width ‘width ‘ and a Debye length ‘lam ‘.

19 """

20 return laplacian_1d(width) - mass_1d(width) / lam

Given the nodal positions, we can now compute an array containing the
matrices for each element:

1 lam = 0.5 # Debye length

2 x_g = np.array([0, 0.1, 0.2, 0.5, 1.0, 2.0]) # Node positions

3 widths_e = np.diff(x_g) # Element widths

4 K_ell = np.array ([pb_1d_element(width , lam) # El. matrices

5 for width in widths_e])

What is now left is to assemble these into a global stiffness matrix K. We
write a utility function that achieves this for the one-dimensional case:

1 def assemble_1d(K_ell):

2 """

3 Assemble the global matrix from the element matrices.

4 """

5 e, l, _ = K_ell.shape # Nb elements , nb element nodes

6 K_gg = np.zeros((e+1, e+1))

7 for i in range(e): # Loop over all elements and sum

8 K_gg[i:i+l, i:i+l] += K_ell[i]

9 return K_gg

72

Running this code for the above node positions yields the system matrix with
values

K =

−10.07 9.97 0.00 0.00 0.00 0.00
9.97 −20.13 9.97 0.00 0.00 0.00
0.00 9.97 −13.60 3.23 0.00 0.00
0.00 0.00 3.23 −5.87 1.83 0.00
0.00 0.00 0.00 1.83 −4.00 0.67
0.00 0.00 0.00 0.00 0.67 −1.67

. (9.25)

The code above uses a notation where the suffixes indicate what an array
dimensions represents. The suffix _e indicates and element index, suffix _l a
local (per-element) node and suffix _g denotes the index of the global node.
Suffixes are combined to show overall dimensions of an array. For example,
variable K_gg contains the system matrix K and therefore needs two global
node indices. Futhermore, K_ell contains element matrices for each element
in the system and therefore needs the three indices, one for the element and
the other two for the matrix dimensions.

73

Chapter 10

Nonlinear problems

Context: We have so far considered linear problems. However, we have
already encountered the Poisson–Boltzmann equation as an example of a
nonlinear partial differential equation. Solving nonlinear partial differential
equations introduces two additional levels of difficulty: First, we have to
calculate integrals over functions with a polynomial of order higher than
two in the basis function. Second, we have to be able to solve a nonlinear
system of equations. This chapter introduces numerical quadrature and the
Newton-Raphson method as mathematical tools for nonlinear equations.

10.1 Numerical quadrature

The term quadrature is a synonym for integration, but quadrature is often
used in contexts where integrals are approximated with numerical methods.
The integrals that we have encountered so far were of the form(

dkN
(e)
I

dxk
,
dlN

(e)
J

dxl

)
=

∫
e

dx
dkN

(e)
I

dxk
dlN

(e)
J

dxl
(10.1)

i.e. integrals over combinations of shape functions (or basis functions) and
their derivatives. Since we have only worked with linear finite-element basis
functions, we needed to integrate constant, linear or quadratic functions, which
all are trivial to solve analytically. All the integrals from the previous chapters,
in particular the integrals of the Laplace and mass matrices, yielded closed-
form expressions. This is in many cases no longer possible with nonlinear
PDGLs.

74

Example: We can use the Debye length to write the nonlinear Poisson-
Boltzmann equation as

∇̃2Φ̃ = sinh Φ̃ (10.2)

with the nondimensionalized potential Φ̃ = εΦ̃/(2ρ0λ
2) and the nondimen-

sionalized length x̃ = x/λ (or d/ dx̃ = λ d/ dx). In the following, we will
work with Eq. (10.2), but, for the sake of notational simplicity, we will
not write the tilde explicitly.

We now consider the one-dimensional version of the nonlinear PB
equation on the interval [0, L]. The residual is given by

R(x) =
d2Φ

dx2
− sinhΦ. (10.3)

To construct the element matrix, we multiply with a shape function NI(x),

(NI , R) =

(
NI ,

d2Φ

dx2

)
− (NI , sinhΦ)

= NI
dΦ

dx

∣∣∣∣L
0

−
(
dNI

dx
,
dΦ

dx

)
− (NI , sinhΦ).

(10.4)

The function itself on the element is approximated by,

Φ(x) = a1N1(x) + a2N2(x), (10.5)

yielding

(NI , R) = −
(
dNI

dx
, a1

dN1

dx
+ a2

dN2

dx

)
−
(
NI , sinh(a1N1 + a2N2)

)
.

(10.6)
Here, a1 and a2 denote the function values at the left and right node
of the element. The first term on the right-hand side of Eq. (10.6) can
be solved analytically and contains the well-known Laplace matrix. The
second term is nonlinear in ΦN . The integration is difficult to carry out
analytically.

Consider some function f(x) and the integral
∫ 1

−1
dx f(x) over the domain

[−1, 1]. (We restrict ourselves to this domain. An integration over a general
interval [a, b] can always be mapped to this domain.) An obvious solution
would be to approximate the integral with a sum of rectangles, which is also

75

called a Riemann sum. We write∫ 1

−1

dx f(x) ≈
N∑

n=1

wQ
n f(x

Q
n). (10.7)

Equation (10.7) is a quadrature rule. The points xQn are called “quadrature
points” and the wQ

n are the “quadrature weights”. For the rectangle rule, these
weights are exactly the width of the rectangles; other forms of quadrature
rules will be discussed below.

Note: The weights of the quadrature rule need to fulfill certain conditions
(sometimes also called sum rules). For example,

∑N
n=1w

Q
n = b − a = 2

because the integral over f(x) = 1 must yield the length of the domain.
We assume that quadrature points are ordered, i.e. xQn < xQn+1. Then

quadrature point xQn must then lie in the nth interval,
∑n−1

i=1 w
Q
i < 1+xQn <∑n

i=1w
Q
i .

We now ask which values of xQn and wQ
n would be ideal for a given number

of quadrature points N . A good choice for N = 1 is certainly xQ1 = 0 and
wQ

1 = 2. This rule leads to the exact solution for linear functions. If we move
the quadrature point xQ1 to a different location, only constant functions are
integrated exactly.

Example: A linear function

f(x) = A+Bx (10.8)

integrates to ∫ 1

−1

dx f(x) =
[
Ax+Bx2/2

]1
−1

= 2A. (10.9)

The quadrature rule with xQ1 = 0 and wQ
1 = 2 yields∫ 1

−1

dx f(x) = wQ
1 f(x

Q
1) = 2f(0) = 2A, (10.10)

which is the exact result.
A quadratic function

f(x) = A+Bx+ Cx2 (10.11)

76

integrates to∫ 1

−1

dx f(x) =
[
Ax+Bx2/2 + Cx3/3

]1
−1

= 2A+ 2C/3. (10.12)

The quadrature rule yields∫ 1

−1

dx f(x) = wQ
1 f(x

Q
1) = 2f(0) = 2A, (10.13)

which is missing the 2C/3 term.

With two quadrature points, we should be able to integrate a third-order
polynomial exactly. We can determine these points by explicitly demanding
the exact integration of polynomials up to the third order with a sum consisting
of two terms: ∫ 1

−1

dx 1 = 2 = wQ
1 + wQ

2 (10.14)∫ 1

−1

dx x = 0 = wQ
1 x

Q
1 + wQ

2 x
Q
2 (10.15)∫ 1

−1

dx x2 = 2/3 = wQ
1 (x

Q
1)

2 + wQ
2 (x

Q
2)

2 (10.16)∫ 1

−1

dx x3 = 0 = wQ
1 (x

Q
1)

3 + wQ
2 (x

Q
2)

3 (10.17)

Solving these four equations leads directly to

wQ
1 = wQ

2 = 1, xQ1 = 1/
√
3 and xQ2 = −1/

√
3. (10.18)

For three quadrature points, an identical construction yields

wQ
1 = wQ

3 = 5/9, wQ
2 = 8/9, xQ1 = −

√
3/5, xQ2 = 0 and xQ3 =

√
3/5

(10.19)
This type of numerical integration is called Gaussian quadrature.

For integrals over arbitrary intervals [a, b], we have to rescale the quadra-
ture rules. By substituting y = (a+ b+ (b− a)x)/2, we get∫ b

a

dyf(y) =
b− a

2

∫ 1

−1

dxf(y(x)) ≈ b− a

2

N−1∑
n=0

wQ
n f(y(x

Q
n)), (10.20)

77

where the weights wQ
n and the quadrature points xQn are calculated for the

interval [−1, 1]. Quadrature points and weights can often be found in tabulated
form, e.g. on Wikipedia.

Note: Gaussian quadrature is also often called Legendre-Gaussian quadra-
ture, since there is a connection between the quadrature points and the
roots of the Legendre polynomials.

A simple implementation of Gauss quadrature could look like this:

1 def gauss_quad(a, b, f):

2 # Gauss points in the interval [-1, 1] and weights

3 x = np.array ([-1/np.sqrt (3), 1/np.sqrt (3)])

4 w = np.array([1, 1])

5 return (b-a)/2 * np.sum(w*f(a + (b-a)*(x+1) /2))

10.1.1 Poisson-Boltzmann equation

Recall the residual of the PB equation, Eq. (10.6),

(N
(e)
I , R) = −

(
dN

(e)
I

dx
, a

(e)
1

dN
(e)
1

dx
+ a

(e)
2

dN
(e)
2

dx

)
−
(
N

(e)
I , sinh

(
a
(e)
1 N

(e)
1 + a

(e)
2 N

(e)
2

))
,

(10.21)

where a
(e)
1 and a

(e)
2 are the values at the left and right node of the element

e. In the following we will drop the explicit element index e for brevity
and will reintroduce it where necessary. The first term as the well-known
Laplace operator with the known (and constant) Laplace matrix LIJ =
(dNI/ dx, dNJ/ dx). The Laplace matrix is constant because the Laplace
operator is linear.

We now approximate the third and nonlinear term
(
NI , sinh(a1N1 + a2N2)

)
using Gaussian quadrature,

(NI , sinhΦ) =

∫
e

dxNI(x) sinh
(
a1N1(x) + a2N2(x)

)
=
∑
i

∆x

2
wQ

i NI(xi) sinh
(
a1N1(xi) + a2N2(xi)

) (10.22)

The sum here runs over the quadrature points i within element e. Furthermore,
∆x is the length of the element; the term ∆x/2 comes from the rescaling
of the quadrature rule, Eq. (10.20). Furthermore, xi is the position of the

78

https://en.wikipedia.org/wiki/Gaussian_quadrature

ith quadrature point within element e. For a single quadrature point with
wQ

0 = 2 and NI(x0) = 1/2 this yields

(NI , sinhΦ) =
∆x

2
sinh

(
a1 + a2

2

)
. (10.23)

The total residual for basis function k then becomes the sum over all
elements that share node k, in one dimension explicitly

Rk = (φk, R) =(N
(k−1)
2 , R) + (N

(k)
1 , R)

=L
(k−1)
21 ak−1 + L

(k−1)
22 ak + L

(k)
11 ak + L

(k)
12 ak+1

+
∆x(k−1)

2
sinh

(
ak−1 + ak

2

)
+

∆x(k)

2
sinh

(
ak + ak+1

2

)
.

(10.24)

We are now looking for the coefficients an for which Rk = 0 for all k. This
requires an algorithm for finding the roots of a system of nonlinear equations,
which we discuss in the next chapter.

10.1.2 Implementation

In practical implementations of nonlinear problems, it is often easier to
simply implement numerical quadrature and not use the analytic element
matrices. For linear finite elements, the integrals of linear operators are at
most quadratic and hence we can exactly integrate them with two quadrature
points. We start by implementing the shape functions:

1 shape_functions = [

2 lambda zeta: 1 - zeta ,

3 lambda zeta: zeta

4]

5

6 shape_function_derivatives = [

7 lambda zeta: -np.ones_like(zeta),

8 lambda zeta: np.ones_like(zeta)

9]

The residuals per element, (NI , R), can then be computed directly from the
quadrature rules

1 def element_residual(x1 , x2 , a1 , a2):

2 """ Residual per element """

3 width = x2 - x1 # Width/size of the element

4 def f(sf , dsf , x):

5 # sf is shape function N_I

79

6 # dsf is shape function derivative dN_I/dx

7 r = -dsf(x) * (a1*shape_function_derivatives [0](x) +

8 a2*shape_function_derivatives [1](x))

9 r -= sf(x) * np.sinh(a1*shape_functions [0](x) +

10 a2*shape_functions [1](x))

11 return r

12 retvals = []

13 for sf , dsf in zip(shape_functions ,

14 shape_function_derivatives):

15 retvals += [

16 # Integrate over normalized interval [0, 1]

17 width * gauss_quad (0, 1, lambda x: f(sf, dsf , x))

18]

19 return retvals

10.2 Newton-Raphson method

The Newton-Raphson method, or just the Newton method, is a method for
the iterative solution of a nonlinear equation. For illustration, we will first
describe it for scalar-valued functions and then generalize the method for
vector-valued functions.

We are looking for a solution of the equation f(x) = 0 for an arbitrary
function f(x). Note that generally there can be arbitrary many solution,
but the algorithm will only pick one. The idea of the Newton method is to
linearize the equation at a point xi, i.e. to write a Taylor expansion up to
first order, and then to solve this linearized system. The Taylor expansion of
the equation at xi

f(x) ≈ f(xi) + (x− xi)f
′(xi) = 0 (10.25)

has the root xi+1 given by

xi+1 = xi − f(xi)/f
′(xi), (10.26)

where f ′(x) = df/ dx is the first derivative of the function f . The value
xi+1 is now (hopefully) closer to the root x0 (with f(x0) = 0) than the value
xi. The idea of the Newton method is to construct a sequence xi of linear
approximations of the function f that converges to x0. We therefore use the
root of the linearized form of the equation as the starting point for the next
iteration. An example of such an iteration is shown in Fig. 10.1.

The discretization of our nonlinear PDGLs led us to a system of equations
Rk (⃗a) = 0. We write this here as f⃗(x⃗) = 0⃗. The Newton method for solving

80

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
x

−6

−4

−2

0

2

4

6

f

Figure 10.1: Illustration of the Newton method for solving the equation
f(x) = 0, here for the function f(x) = 10 sin(x) − exp 2x + 2. The dashed
lines are the linearized form, Eq. (10.25). The procedure starts at x = 0.5
(blue dot) and yields the zero of the form linearized around this point (blue
cross). The second iteration is the orange line, the third the green line. Only
the first three steps of this Newton iteration are shown here, after which a
good solution of the zero has already been found.

81

such coupled nonlinear equations works analogously to the scalar case. We
first write the Taylor expansion

f⃗(x⃗) ≈ f⃗(x⃗i) +K(x⃗i) · (x⃗− x⃗i) = 0 (10.27)

with the Jacobi matrix

Kmn(x⃗) =
dfm(x⃗)

dxn
. (10.28)

In the context of finite elements, K(x⃗i) is also often referred to as the tangent
matrix or tangent stiffness matrix.

The Newton method can then be written as

x⃗i+1 = x⃗i −K−1(x⃗i) · f⃗(x⃗i). (10.29)

In the numerical solution of Eq. (10.29), the step ∆x⃗i = x⃗i+1 − x⃗i is usually
approximated by solving the linear linear system of equations K(x⃗i) ·∆x⃗i =
−f⃗(x⃗i) and not by using an explicit matrix inversion of K(x⃗i).

For a purely linear problem, as discussed exclusively in the previous
chapters, the tangent matrix K is constant and takes on the role of the
system matrix. In this case, the Newton method converges in a single step.

10.2.1 Example: Poisson-Boltzmann equation

To use the Newton method, we still need to determine the tangent matrix
for the Poisson-Boltzmann equation. To do this, we linearize Rk in an. This
yields

KIJ =
∂(NI , R)

∂aJ
= −LIJ−

∑
i

∆x

2
wQ

i NI(xi)NJ(xi) cosh
(
a1N1(xi) + a2N2(xi)

)
.

(10.30)
The second term has a structure similar to the mass matrix and we write

MIJ =
∑
i

∆x

2
wQ

i NI(xi)NJ(xi) cosh
(
a1N1(xi) + a2N2(xi)

)
. (10.31)

The entire tangent matrix for element e is therefore K(e)(⃗a) = −L(e)−M (e)(⃗a),
where M (e)(⃗a) explicitly depends on the state a⃗ of the Newton iteration. For
a purely linear problem, K(e) is the element matrix and does not depend
on a⃗. (Linearization yields coshx ≈ 1.) The system tangent matrix can be
constructed from the element tangent matrix KIJ using the standard assembly
process.

82

The expression for integration becomes particularly simple with only one
Gaussian quadrature point. Then wQ

0 = 2 and x0 lies exactly in the center of
the respective element e, so that NI(x0) = 1/2. This yields

MIJ =
∆x

4
cosh

(
a1 + a2

2

)
. (10.32)

83

Chapter 11

Finite elements in two and
three dimensions

Context: We now generalize the results of the previous chapter to several
dimensions. This has several technical hurdles: for the partial integration,
we now have to use results from vector analysis, in particular the Gaussian
theorem or Green identities. The discretization is carried out in the form
of elements, usually triangles or tetrahedra. Due to this more complex
geometry of the elements, a clean book-keeping of the indices, i.e. the
distinction between global nodes, element nodes and elements, becomes
important.

11.1 Differentiability

To illustrate how the requirement for differentiability can be reduced in higher-
dimensional problems, and how we can thus use linear basis functions again,
the Poisson equation is considered further here. In D-dimensions (usually
D = 2 or D = 3) the Poisson equation leads to the residual

R(r⃗) = ∇2Φ +
ρ(r⃗)

ε
= ∇ · (∇Φ) +

ρ(r⃗)

ε
(11.1)

where r⃗ = (x, y, z, ...) is now a D-dimensional vector denoting the position,
and ∇2 is the Laplacian in D dimensions. The potential Φ(r⃗) obviously
also depends on the spatial position r⃗. The right-hand side of Eq. (11.1) is
explicitly written so that the combination of divergence and gradient that
yields the Laplace operator can be recognized.

84

We now write down the weighted residual. The scalar product with a test
function v(r⃗) yields

(v(r⃗), R(r⃗)) =

∫
Ω

dD r v(r⃗)

(
∇2Φ +

ρ(r⃗)

ε

)
(11.2)

=

∫
∂Ω

dD−1 r v(r⃗)
(
∇Φ · n̂(r⃗)

)
−
∫
Ω

dD r∇v · ∇Φ +

∫
Ω

dD r
v(r⃗)ρ(r⃗)

ε
,

(11.3)

whereby the Green’s first identity has now been used to rewrite the surface
or volume integral over Ω and to transfer the gradient to the test function.
Green’s identity takes on the role that partial integration had in the one-
dimensional case. n̂(r⃗) is the normal vector pointing outwards on the boundary
∂Ω of the domain (see Fig. 11.1. The first term on the right-hand side of
Eq. (11.3) will become important again when we want to specify Neumann
boundary conditions on the boundary ∂Ω of the domain. In the Dirichlet
case, this term disappears.

Note: The Green identities are another important result of vector analysis.
They follow from the Gaussian theorem. The Gauss theorem is∫

Ω

dD r∇ · f⃗(r⃗) =
∫
∂Ω

dD−1 r f⃗(r⃗) · n̂(r⃗) (11.4)

where ∂Ω denotes the D−1 dimensional boundary of the D-dimensional in-
tegration domain Ω. Furthermore, n̂(r⃗) is the normal vector perpendicular
to the boundary pointing out of the integration domain (see also Fig. 11.1).

We now apply Gauss’s theorem to a vector field f⃗(r⃗) = ϕ(r⃗)v⃗(r⃗), where
ϕ(r⃗) is a scalar field and v⃗(r⃗) is again a vector field. We obtain∫

Ω

dD r∇ · (ϕv⃗) =
∫
∂Ω

dD−1 r (ϕv⃗) · n̂. (11.5)

Due to the chain rule of differentiation, the following applies

∇ · (ϕv⃗) = (∇ϕ) · v⃗ + ϕ (∇ · v⃗) . (11.6)

(The equation (11.6) is most easily seen if it is written in component form.)
This leads to∫

Ω

dD r (∇ϕ · v⃗ + ϕ∇ · v⃗) =
∫
∂Ω

dD−1 r (ϕv⃗) · n̂. (11.7)

85

Figure 11.1: The boundary ∂Ω limits the integration or simulation area Ω.
The normal vector n̂ is defined on the boundary ∂Ω and points outwards
perpendicular to the boundary. This sketch shows the two-dimensional case.
In the three-dimensional case, Ω is a volume and ∂Ω is the surface that
bounds the volume. In this case, too, a normal vector n̂ can be defined on
this bounding surface.

With v⃗(r⃗) = ∇ψ we obtain the usual representation of Green’s first
identity,∫

Ω

dD r
(
∇ϕ · ∇ψ + ϕ(r⃗)∇2ψ

)
=

∫
∂Ω

dD−1 r (ϕ∇ψ) · n̂. (11.8)

In Eq. (11.3) the requirement for differentiability is now reduced. The
Laplace operator, i.e. the second derivative, no longer appears in this equation.
We just need to be able to calculate gradients of the test function v(r⃗) and
the potential Φ(r⃗).

11.2 Grid

We now need to choose suitable basis functions so that the Galerkin conditions
yield a linear system of equations. It is useful to formulate the problem in
terms of shape functions rather than basis functions. The rest of the theory
in this chapter is developed for two-dimensional problems (D = 2).

86

Figure 11.2: Triangulation of a rectangular domain Ω into (a) a structured
grid and (b) an unstructured grid.

11.2.1 Triangulation

Before we can talk about these details of the basis functions, we need to discuss
the decomposition of the simulation domain into elements. In two dimensions,
these elements are usually (but not necessarily) triangles, i.e. one performs
a triangulation of the domain. Figure 11.2 shows such a triangulation for a
rectangular (2-dimensional) domain. This decomposition is also called the
grid (or mesh), the individual triangles elements (or mesh elements), and
the corners of the triangles nodes (or mesh nodes). The process of dividing
the area is called meshing. We will work exclusively with structured grids, as
shown in Fig. 11.2a. Many simulation packages also support unstructured
grids as shown in Fig. 11.2b.

For this type of decomposition, too, the objective function Φ(r⃗) can be
approximated by a sum. We write

Φ(x, y) ≈ ΦN(x, y) =
∑
n

anφn(x, y), (11.9)

where n is a unique node index. That is, the degrees of freedom or expansion
coefficients an live on the nodes (with the positions r⃗n) of the simulation
domain, and for a finite element basis, Φ(r⃗n) = an will again apply, i.e., an
is the function value on the corresponding node. The shape function then
defines how this function value is interpolated between the nodes (i.e. across
the triangles).

Note: In three dimensions, the decomposition of space usually takes place
in tetrahedra. The meshing of such a three-dimensional area is highly non-
trivial. All commercial finite element packages have meshing tools built

87

0 1 2 3

4 5 6 7

8 9 10 11

(0)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

12 13 14

(12)

(13)

(14)

(15)

(16)

(17)

[0] [1]

[3] [4] [5]

[6] [7] [8]

[2]

x

y

Lx

Ly

15

(a) (b)

0 1

2

01

2(0)

(1)

ξ

η

Figure 11.3: Decomposition of a rectangular area into a structured grid. (a)
The structured decomposition is first carried out into smaller boxes, whose
unique global index is shown in square brackets [·] and in blue. These boxes
are then divided into two triangles, the elements. The unique global element
index is shown in parentheses (·) and in red. Furthermore, the nodes are
labeled with their unique global index (black). (b) The boxes are decomposed
into two triangles with local element indices (0) and (1). Within an element,
the nodes are identified with a corresponding local node index.

in to take over or at least support this process. A free software solution
for meshing complex geometries is Gmsh (https://gmsh.info/).

11.2.2 Structuring

Using a structured grid simplifies the assignment of a node index n or an
element index (n) to corresponding spatial positions. Figure 11.3 shows
such a structured decomposition into Mx ×My (with Mx = Lx/∆x = 3 and
My = Ly/∆y = 3) boxes with two elements each. The grid contains Nx ×Ny

(with Nx =Mx + 1 = 4 and Ny =My + 1 = 4) nodes.

In this structured grid, we can infer the global index nK of the nodes from
their coordinates. Since the degrees of freedom live on the nodes, the global
node index nK later identifies a column or row from the system matrix. Let

88

https://gmsh.info/

i, j be the (integer) coordinate of the node, then

nK = i+Nxj (11.10)

the corresponding global node index. The node coordinates start at zero,
i.e. i ∈ {0, 1, ..., Nx − 1} and j ∈ {0, 1, ..., Ny − 1}. In the same way, we can
deduce the element index nE from the element coordinates k, l,m,

nE = k + 2(l +Mxm), (11.11)

where l,m with l ∈ {0, 1, ...,Mx − 1} and m ∈ {0, 1, ...,My − 1} is the
coordinate of the box and k ∈ {0, 1} indicates the element within a box. The
factor 2 appears in Eq. (11.11) because there are two elements per box.

Note: The equations (11.10) and (11.11) are probably the simplest map-
pings of coordinates to a linear, consecutive index. Other possibilities,
which are also used in numerics, arise from the space-filling curves, such
as the Hilbert or Peano curve. Space-filling curves sometimes have ad-
vantageous properties, such as the fact that coordinates that are close
together also get indices that are close together. This leads to a more
compact structure of the sparse system matrix and can bring advantages
in the runtime of the algorithms. The reason for such runtime advantages
is closely linked to the hardware, e.g. how the hardware organizes mem-
ory access and uses caches. Optimizing algorithms for specific hardware
architectures is highly non-trivial and requires detailed knowledge of the
computer architecture.

11.3 Shape functions

Our shape functions live on the individual triangles of the triangulation
and must either be 1 at the respective node or disappear. We express the
shape functions here using the scaled coordinates ξ = (x − x0)/∆x and
η = (y − y0)/∆y, where x0 and y0 is the origin of the respective box. Thus,
in the lower left corner of the box, ξ = 0 and η = 0, and in the upper right
corner, ξ = 1 and η = 1.

The shape functions for the element with local element index (0) (see
Fig. 11.3b) are

N
(0)
0 (ξ, η) = 1− ξ − η (11.12)

N
(0)
1 (ξ, η) = ξ (11.13)

N
(0)
2 (ξ, η) = η, (11.14)

89

Figure 11.4: Form functions for linear triangular elements in two dimensions.
One of the form functions is at each of the nodes 1. At the other two nodes,
the form functions drop to 0.

where the subscript i in Ni denotes the local node index at which the shape
function becomes 1. These shape functions are shown in Fig. 11.4.

N
(1)
0 (ξ, η) = ξ + η − 1 (11.15)

N
(1)
1 (ξ, η) = 1− ξ (11.16)

N
(1)
2 (ξ, η) = 1− η. (11.17)

These form functions fulfill the property N
(n)
0 + N

(n)
1 + N

(n)
2 = 1, which is

called the partition of unity.
In the following, we need the derivatives of the shape functions with

respect to the positions x and y. In the general case, we obtain

∂N
(n)
i

∂x
=
∂N

(n)
i

∂ξ

∂ξ

∂x
+
∂N

(n)
i

∂η

∂η

∂x
(11.18)

∂N
(n)
i

∂y
=
∂N

(n)
i

∂ξ

∂ξ

∂y
+
∂N

(n)
i

∂η

∂η

∂y
, (11.19)

90

or in compact matrix-vector notation

∇x,yN
(n)
i · J = ∇ξ,ηN

(n)
i , (11.20)

where ∇x,y denotes the gradient with respect to the displayed coordinates.
The matrix

J =

(
∂x/∂ξ ∂x/∂η
∂y/∂ξ ∂y/∂η

)
=

(
∆x 0
0 ∆y

)
(11.21)

is called the Jacobi matrix. In our example, the explicit matrix on the right-
hand side of Eq. (11.21) is obtained, which is independent of the box we
are looking at. For more complex grids (e.g. Fig. 11.2b), the Jacobi matrix
describes the shape of the triangles and thus the structure of the grid. The
representation using the rescaled coordinates ξ and η, and thus Eq. (11.20)
as gradients, decouples the interpolation rule Eq. (11.13)-(11.17) from the
structure of the grid and is therefore particularly useful for unstructured
grids.

For our grid, we therefore find

∂N
(0)
0

∂x
= −1/∆x,

∂N
(0)
0

∂y
= −1/∆y, (11.22)

∂N
(0)
1

∂x
= 1/∆x,

∂N
(0)
1

∂y
= 0, (11.23)

∂N
(0)
2

∂x
= 0,

∂N
(0)
2

∂y
= 1/∆y, (11.24)

∂N
(1)
0

∂x
= 1/∆x,

∂N
(1)
0

∂y
= 1/∆y, (11.25)

∂N
(1)
1

∂x
= −1/∆x,

∂N
(1)
1

∂y
= 0, (11.26)

∂N
(1)
2

∂x
= 0,

∂N
(1)
2

∂y
= −1/∆y (11.27)

for the derivatives of the shape functions. Since we have only used linear
elements, these derivatives are all constants.

11.4 Galerkin method

We can now use the Galerkin method to determine the linear system of
equations that describes the discretized differential equation. Again, we
distinguish between the element matrices and the system matrix. For the

91

element matrix, we write the contribution of the shape function to the Galerkin
condition. This yields

(N
(n)
I , R) =

(
N

(n)
I ,∇2Φ +

ρ(r⃗)

ε

)
=

∫
∂Ω

d2 rN
(n)
I (vr) · n̂(vr)−

∑
J

aJ(N
(n)
I ,∇N (n)

J) +
1

ε
(N

(n)
I , ρ),

= −
∑
J

K
(n)
IJ aJ + f

(n)
I ,

(11.28)

where K
(n)
IJ is now the element matrix and f

(n)
I is the element’s contribution

to the right-hand side. We get

K
(n)
IJ = (∇N (n)

I ,∇N (n)
J). (11.29)

where for two vector fields f⃗(r⃗) and g⃗(r⃗) the scalar product is defined as

(f⃗ , g⃗) =

∫
Ω

d3 r f⃗ ∗(r⃗) · g⃗(r⃗), (11.30)

i.e. as a Cartesian scalar product between the two function values. The
contribution of the element to the right side is

f
(n)
I =

1

ε
(N

(n)
I , ρ) +

∫
∂Ω

d2 r N
(n)
I (r⃗)∇Φ · n̂(r⃗). (11.31)

Example: We now calculate the element matrices for the two elements
of our structured example mesh. For example, the component I = 0 and
J = 0 of the element (0) is

K
(0)
00 = (∇N (0)

0 ,∇N (0)
0)

=

∫
Ω(0)

d2 r

(
1

∆x2
+

1

∆y2

)
=

∆x∆y

2

(
1

∆x2
+

1

∆y2

)
=

1

2

(
∆y

∆x
+

∆x

∆y

)
(11.32)

where the factor ∆x∆y/2 is the area of the element. In the following, we

consider the special case ∆x = ∆y, in which K
(0)
00 = 1 is obtained. (In the

92

one-dimensional case, a 1/∆x would remain here. The units of K thus
differ in the one-dimensional and two-dimensional case!)

The other scalar products can be calculated similarly. We obtain

K(0) = K(1) =

 1 −1/2 −1/2
−1/2 1/2 0
−1/2 0 1/2

 (11.33)

for both element matrices. These matrices are identical because the
numbering of the local element nodes was chosen such that the two
triangles can be rotated into each other (see Fig.

From these element matrices, we now have to construct the system
matrix. The local node indices are shown in Fig. These correspond to
the columns and rows of Eq. (11.33). They must now be mapped to the
global node indices and summed in the system matrix. For example, for
element (8) in Fig. 11.3a, we have to map the local node 0 to the global
node 5, 0 → 5. That is, the first row of the element matrix becomes the
sixth row of the system matrix. (It is the sixth row, not the fifth row,
because the indexing starts at zero.) Furthermore, we have to map 1 → 6
and 2 → 9. The contribution ∆K(8) of element (8) to the 16× 16 system
matrix is therefore

∆K(8) =

· · · · · · · · · · · · · · · ··
· · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
· · · · · 1 −1

2
· · −1

2
· · · · ·

· · · · · −1
2

1
2

· · · · · · · · ·
· · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · ·
· · · · · −1

2
· · · 1

2
· · · · · ·

· · · · · · · · · · · · · · · ··
· · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

(11.34)

whereby entries with the value 0 are shown as a dot (·) for better visual
representation. The total system matrix is then the sum of all elements,

93

K =
∑

nK
(n). We get

K =

1 1̄
2

· · 1̄
2

· · · · · · · · · · ·
1̄
2

2 1̄
2

· · 1̄ · · · · · · · · · ·
· 1̄

2
2 1̄

2
· · 1̄ · · · · · · · · ·

· · 1̄
2

1 · · · 1̄
2

· · · · · · · ·
1̄
2

· · · 2 1̄ · · 1̄
2

· · · · · · ·
· 1̄ · · 1̄ 4 1̄ · · 1̄ · · · · · ·
· · 1̄ · · 1̄ 4 1̄ · · 1̄ · · · · ·
· · · 1̄

2
· · 1̄ 2 · · · 1̄

2
· · · ·

· · · · 1̄
2

· · · 2 1̄ · · 1̄
2

· · ·
· · · · · 1̄ · · 1̄ 4 1̄ · · 1̄ · ·
· · · · · · 1̄ · · 1̄ 4 1̄ · · 1̄ ·
· · · · · · · 1̄

2
· · 1̄ 2 · · · 1̄

2

· · · · · · · · 1̄
2

· · · 1 1̄
2

· ·
· · · · · · · · · 1̄ · · 1̄

2
2 1̄

2
·

· · · · · · · · · · ·1̄ · · 1̄
2

2 1̄
2

· · · · ·· · · · · · · 1̄
2

· · 1̄
2

1

(11.35)

where the bar above the number indicates a minus, e.g. 1̄ = −1. This
16×16 matrix is again not regular; its rank is 15. This means that at least
one Dirichlet boundary condition is needed to obtain a solvable problem.
This example also shows that the system matrix is difficult to calculate
by hand and that we need a computer to help us.

11.5 Boundary conditions

11.5.1 Dirichlet boundary conditions

Dirichlet boundary conditions work analogously in higher dimensions to
the one-dimensional case. We fix the function value at a node. We obtain
ΦN (r⃗n) = an ≡ Φn, where Φn is the chosen function value, and thus replace a
Galerkin condition by fixing the potential at the node.

11.5.2 Neumann boundary conditions

As in the one-dimensional case, Neumann boundary conditions are incorpo-
rated into the right-hand side via the surface term in Eq. These conditions

94

are therefore defined on the sides of the triangles. For a constant directional
derivative Φ′ = ∇Φ · n̂, we obtain

fI2D =
1

ε
(NI2D, ρ) + Φ′

∫
∂Ω

drNI2D(vr). (11.36)

The integral in Eq. (11.36) is carried out over the side of the triangle. For the
side between nodes 2 and 3 (see Fig. 11.3), for example, the shape functions

N
(0)
0 and N

(0)
1 (element (4)) are not equal to zero. We obtain

f
(4)
0 =

1

ε
(N

(0)
0 , ρ) + Φ′

∫ ∆x

0

dx (1− x/∆x) =
1

ε
(N

(0)
0 , ρ) +

1

2
Φ′∆x (11.37)

f
(4)
1 =

1

ε
(N

(0)
1 , ρ) + Φ′

∫ ∆x

0

dx x/∆x =
1

ε
(N

(0)
1 , ρ) +

1

2
Φ′∆x (11.38)

for the right-hand side. The boundary conditions, which are obtained without
further modification of the right-hand side (see Eq. (11.35)), are therefore
Neumann conditions with a vanishing derivative, Φ′ = 0.

95

Chapter 12

Data structures &
implementation

Context: In this chapter, we will show how a simple finite element
solver for two-dimensional problems can be implemented in the Python
programming language using our example of solving the Poisson equation.
Here, we assume that the charge density vanishes. Thus, we calculate
the spatial distribution of the electrostatic potential under appropriate
boundary conditions. We will use this to calculate the capacitance of a
plate capacitor.

12.1 Example problem

We will now further develop our example problem from the previous chapter
and calculate the capacitance of a plate capacitor. To do this, we assume an
infinitesimal charge density in the capacitor, ρ = 0. The Poisson equation
then becomes the Laplace equation,

∇2Φ = 0. (12.1)

The plates of the capacitor are assumed to be metallic, i.e. the potential
on the capacitor plates is constant (see Fig. 12.1a). This is modeled by a
Dirichlet boundary condition. The rest of the domain is given a Neumann
boundary condition, in which the derivative on the surface disappears.

In the context of the Poisson or Laplace equation, directional derivatives
at the boundary have a simple interpretation. We look at a small volume
element ∆Ω at the boundary of the area (see Fig. 12.1b). Integrating the

96

Figure 12.1: (a) Geometry of the plate capacitor considered in this chapter.
The potential Φ is constant on the electrodes. (b) Section of the boundary with
integration area for deriving the interpretation of the directional derivative at
the boundary.

Poisson equation over this area yields,∫
∆Ω

d3 r∇2Φ =

∫
∂∆Ω

d2 r∇Φ · n̂(r⃗) = 1

ε

∫
∆Ω

d3 r ρ(r⃗), (12.2)

where the integration over ∂∆Ω is done along the path shown in Fig. Now, we
assume that the two sides of the path that are perpendicular to the boundary
of the domain are negligible compared to the other two sides. Furthermore,
we assume that only a surface charge σ(r⃗) lives in the domain. This yields∫

∂∆Ω

d2 r n̂(r⃗) · ∇Φ =
1

ε

∫
∆A

d2 r σ(r⃗), (12.3)

where ∆A is the area of the boundary of the simulation domain that lies within
∆Ω. Assuming that the space outside the simulation domain is field-free, i.e.
∇Φ = 0, then

∇Φ · n̂(r⃗) = σ(r⃗)

ε
, (12.4)

the directional derivative thus yields the surface charge at the boundary.
The absence of a field outside our simulation domain is only exactly

fulfilled at the electrodes. These are metallic and therefore by definition free

97

of fields. (A field inside an ideal metal immediately leads to a rearrangement
of charges that then compensate for this field). This means that we can use
Eq. (12.4) to calculate the charge induced on the capacitor plates. Together
with the potential given by the Dirichlet boundary conditions, this can be
used to calculate the capacitance on the capacitor plates.

On the other hand, the implicit Neumann boundary condition ∇Φ · n̂ = 0
means that our simulation is carried out under conditions in which the
boundary is charge-free but outside the simulation domain the field disappears.
This is an artificial condition that can cause errors. So you have to make
sure that the simulation domain is large enough in the direction parallel to
the capacitor plates to properly capture the stray fields at the edge of the
capacitor.

12.2 Initialization

The example implementations follow simple rules for readable computer code.
This should always be written in a way that a third person can read and
reuse it. We will therefore...

1. ...use only English language.

2. ...write out variable names and do not use symbols as variable names
(e.g. potential and not the written out symbol phi as the name).

3. ...add a suffix to array variables that indicates the type of indices (e.g.
potential_xy to indicate that there are two indices corresponding to
the positions x and y).

4. ...document the code with comment blocks and Python docstrings. We
recommend the numpydoc standard for docstrings.

In this implementation, we use explicit loops to improve the readability of
the code. The code can still be vectorized by using numpy operations.

First, we have to initialize the code and determine how many grid points
we want to use. We define the variables

1 # Grid size , number of nodes

2 nb_nodes = 32, 32

3 Nx , Ny = nb_nodes

We now also determine the range over which the two electrodes of the capacitor
should extend:

98

https://www.python.org/dev/peps/pep-0257/
https://numpydoc.readthedocs.io/en/latest/format.html

1 # Top capacitor plate

2 top_left = Nx//4

3 top_right = 3*Nx//4-1

4 top_potential = 1

5

6 # Bottom capacitor plate

7 bottom_left = Nx//4

8 bottom_right = 3*Nx//4-1

9 bottom_potential = -1

The area is specified here with node indices. Furthermore, we still need the
element matrix that we store in a numpy.ndarray:

1 # Element matrix , index l indicates element -local node

2 element_matrix_ll = np.array ([[1, -1/2, -1/2],

3 [-1/2, 1/2, 0],

4 [-1/2, 0, 1/2]])

The suffix _ll indicates that there are two indices (the array is two-dimensional),
both of which denote a local element node. We then initialize the system
matrix and the right-hand side, initially with zeros:

1 # System matrix , index g indicates global node

2 system_matrix_gg = np.zeros([Nx*Ny , Nx*Ny])

3

4 # Right hand side

5 rhs_g = np.zeros(Nx*Ny)

The suffix _g denotes the index of the global node. The variable rhs_g

contains the vector f⃗ and therefore needs only one index. The variable
system_matrix_gg contains the system matrix K and therefore needs two
global node indices.

12.3 System matrix

The core of the simulation program is the structure of the system matrix. In
this section, this is realized by explicit loops. The next section shows how
this can be done in a more compact (and efficient) but less transparent way
using special numpy commands.

First, we define a function that turns node coordinates into the global
node index:

1 def node_index(i, j, nb_nodes):

2 """

3 Turn node coordinates (i, j) into their global node index

.

4

5 Parameters

99

6 ----------

7 i : int

8 x-coordinate (integer) of the node

9 j : int

10 y-coordinate (integer) of the node

11 nb_nodes : tuple of ints

12 Number of nodes in the Cartesian directions

13

14 Returns

15 -------

16 g : int

17 Global node index

18 """

19 Nx , Ny = nb_nodes

20 return i + Nx*j

We use this in another auxiliary function that adds the element matrix to
the system matrix. To do this, the element matrix must first be stretched to
the system matrix. The function looks like this:

1 def add_element_matrix(system_matrix_gg , element_matrix_ll ,

2 global_node_indices):

3 """

4 Add element matrix to global system matrix.

5

6 Parameters

7 ----------

8 system_matrix_gg : array_like

9 N x N system matrix where N is the number of global

10 nodes. This matrix will be modified by this function.

11 element_matrix_ll : array_like

12 n x n element matrix where n is the number of local

13 nodes

14 global_node_indices : list of int

15 List of length n that contains the global node

16 indices for the local node index that corresponds to

17 the list position.

18 """

19 assert element_matrix_ll.shape == \

20 (len(global_node_indices), len(global_node_indices))

21 for i in range(len(global_node_indices)):

22 for j in range(len(global_node_indices)):

23 system_matrix_gg[global_node_indices[i],

24 global_node_indices[j]] += \

25 element_matrix_ll[i, j]

The assert statement is a watchdog here, making sure that the local element
matrix and the global_node_indices array have the same length. The
two for loops then run through all the entries in the element matrix. The

100

expression global_node_indices[i] then returns the global node index that
corresponds to the local node index of the element matrix. The system matrix
is then assembled by calling this auxiliary method for each element:

1 def assemble_system_matrix(element_matrix_ll , nb_nodes):

2 """

3 Assemble system matrix from the element matrix

4

5 Parameters

6 ----------

7 element_matrix_ll : array_like

8 3 x 3 element matrix

9 nb_nodes : tuple of ints

10 Number of nodes in the Cartesian directions

11

12 Returns

13 -------

14 system_matrix_gg : numpy.ndarray

15 System matrix

16 """

17

18 Nx, Ny = nb_nodes

19 Mx, My = Nx -1, Ny -1 # number of boxes

20

21 # System matrix

22 system_matrix_gg = np.zeros([Nx*Ny , Nx*Ny])

23

24 # Construct system matrix

25 for l in range(Mx):

26 for m in range(My):

27 # Element (0)

28 n0 = node_index(l, m, nb_nodes)

29 n1 = node_index(l+1, m, nb_nodes)

30 n2 = node_index(l, m+1, nb_nodes)

31 add_element_matrix(system_matrix_gg ,

32 element_matrix_ll ,

33 [n0, n1, n2])

34

35 # Element (1)

36 n0 = node_index(l+1, m+1, nb_nodes)

37 n1 = node_index(l, m+1, nb_nodes)

38 n2 = node_index(l+1, m, nb_nodes)

39 add_element_matrix(system_matrix_gg ,

40 element_matrix_ll ,

41 [n0, n1, n2])

42

43 return system_matrix_gg

Here, the two for loops run over the individual boxes. The loop over the two

101

elements per box is explicitly written as two calls to add_element_matrix.
The variables n0, n1 and n2 contain the global node indices describing the
corners of the respective element.

The system matrix that has now been constructed has (implicitly) Neu-
mann boundary conditions with ∇Φ · n̂(r⃗) = 0 on the boundary. We now have
to add the Dirichlet conditions for the electrodes. To do this, we replace the
rows of the system matrix and the corresponding entries of the load vector:

1 def capacitor_bc(system_matrix_gg , rhs_g ,

2 top_left , top_right , top_potential ,

3 bottom_left , bottom_right , bottom_potential ,

4 nb_nodes):

5 """

6 Set boundary conditions for the parallel plate capacitor.

7

8 Parameters

9 ----------

10 system_matrix_gg : numpy.ndarray

11 System matrix. The system matrix is modified by a

call

12 to this function

13 rhs_g : numpy.ndarray

14 Right -hand side vector. The right -hand side vector is

15 modified by a call to this function.

16 top_left : int

17 Leftmost node of the top electrode

18 top_right : int

19 Rightmost node of the top electrode

20 top_potential : float

21 Electrostatic potential of the top electrode

22 bottom_left : int

23 Leftmost node of the bottom electrode

24 bottom_right : int

25 Rightmost node of the bottom electrode

26 bottom_potential : float

27 Electrostatic potential of the bottom electrode

28 nb_nodes : tuple of ints

29 Number of nodes in the Cartesian directions

30 """

31 Nx , Ny = nb_nodes

32 # Dirichlet boundary conditions for top plate

33 for i in range(top_left , top_right +1):

34 n = node_index(i, Ny -1, nb_nodes)

35 mat_g = np.zeros(Nx*Ny)

36 mat_g[n] = 1

37 system_matrix_gg[n] = mat_g

38 rhs_g[n] = top_potential

39

102

40 # Dirichlet boundary conditions for bottom plate

41 for i in range(bottom_left , bottom_right +1):

42 n = node_index(i, 0, nb_nodes)

43 mat_g = np.zeros(Nx*Ny)

44 mat_g[n] = 1

45 system_matrix_gg[n] = mat_g

46 rhs_g[n] = bottom_potential

The entire simulation code now contains calls to these functions, followed
by the numerical solution of the linear system of equations:

1 # Construct system matrix

2 system_matrix_gg = assemble_system_matrix(element_matrix_ll ,

3 nb_nodes)

4

5 # Boundary conditions

6 capacitor_bc(system_matrix_gg , rhs_g ,

7 top_left , top_right , top_potential ,

8 bottom_left , bottom_right , bottom_potential ,

9 nb_nodes)

10

11 # Solve system of linear equations

12 potential_g = np.linalg.solve(system_matrix_gg , rhs_g)

The variable potential_g now contains the values of the electrostatic poten-
tial on the nodes.

12.4 Visualization

The result of the calculation can be visualized using the matplotlib library.
The function matplotlib.pyplot.tripcolor can plot data on a triangulated
2D grid. The following code block visualizes the result of the simulation using
this function.

1 import matplotlib.pyplot as plt

2 import matplotlib.tri

3

4 def make_grid(nb_nodes):

5 """

6 Make an array that contains all elements of the grid. The

7 elements are described by the global node indices of

8 their corners. The order of the corners is in order of

9 the local node index.

10

11 They are sorted in geometric positive order and the first

12 is the node with the right angle corner at the bottom

13 left. Elements within the same box are consecutive.

14

103

https://matplotlib.org/

15 This is the first element per box:

16

17 2

18 | \

19 | \

20 dy | \

21 | \

22 0 --- 1

23

24 dx

25

26 This is the second element per box:

27

28 dx

29 1 ---0

30 \ |

31 \ | dy

32 \ |

33 \|

34 2

35

36 Parameters

37 ----------

38 nb_nodes : tuple of ints

39 Number of nodes in the Cartesian directions

40

41 Returns

42 -------

43 triangles_el : numpy.ndarray

44 Array containing the global node indices of the

45 element corners. The first index (suffix _e)

46 identifies the element number and the second index

47 (suffix _l) the local node index of that element.

48 """

49 Nx , Ny = nb_nodes

50 # These are the node position on a subsection of the grid

51 # that excludes the rightmost and topmost nodes. The

52 # suffix _G indicates this subgrid.

53 y_G , x_G = np.mgrid[:Ny -1, :Nx -1]

54 x_G.shape = (-1,)

55 y_G.shape = (-1,)

56

57 # List of triangles

58 lower_triangles = np.vstack(

59 (node_index(x_G , y_G , nb_nodes),

60 node_index(x_G+1, y_G , nb_nodes),

61 node_index(x_G , y_G+1, nb_nodes)))

62 upper_triangles = np.vstack(

63 (node_index(x_G+1, y_G+1, nb_nodes),

104

64 node_index(x_G , y_G+1, nb_nodes),

65 node_index(x_G+1, y_G , nb_nodes)))

66 # Suffix _e indicates global element index

67 return np.vstack(

68 (lower_triangles , upper_triangles)).T.reshape(-1, 3)

69

70 def plot_results(values_g , nb_nodes , mesh_style=None ,

71 ax=None):

72 """

73 Plot results of a finite -element calculation on a

74 two -dimensional structured grid using matplotlib.

75

76 Parameters

77 ----------

78 nb_nodes : tuple of ints

79 Number of nodes in the Cartesian directions

80 values_g : array_like

81 Expansion coefficients (values of the field) on the

82 global nodes

83 mesh_style : str , optional

84 Will show the underlying finite -element mesh with

85 the given style if set , e.g. ’ko -’ to see edges

86 and mark nodes by points

87 (Default: None)

88 ax : matplotlib.Axes , optional

89 Axes object for plotting

90 (Default: None)

91

92 Returns

93 -------

94 trim : matplotlib.collections.Trimesh

95 Result of tripcolor

96 """

97 Nx, Ny = nb_nodes

98

99 # These are the node positions on the full global grid.

100 y_g , x_g = np.mgrid[:Ny , :Nx]

101 x_g.shape = (-1,)

102 y_g.shape = (-1,)

103

104 # Gouraud shading linearly interpolates the color between

105 # the nodes

106 if ax is None:

107 ax = plt

108 triangulation = matplotlib.tri.Triangulation(

109 x_g , y_g , make_grid(nb_nodes))

110 c = ax.tripcolor(triangulation , values_g ,

111 shading=’gouraud ’)

112 if mesh_style is not None:

105

113 ax.triplot(triangulation , mesh_style)

114 return c

115

116 plt.subplot (111, aspect =1)

117 plot_results(potential_g , nb_nodes , show_mesh=True)

118 plt.xlabel(r’x -position (Δx)’)
119 plt.ylabel(r’y -position (Δy)’)
120 plt.colorbar ().set_label(r’Potential Φ (V)’)

121 plt.tight_layout ()

122 plt.show()

The make_grid function here generates a list of global node indices per
element. The first index is the index of the element (suffix e), the second
index is the local node index within the element (suffix l). The nodes of
the respective element are numbered counterclockwise. For visualization,
“Gouraud” shading is used. This type of coloring linearly interpolates the
value of the nodes on the triangles and exactly matches the interpolation rule
of our shape functions. We can thus represent the full interpolated function
ΦN(r⃗).

12.5 Example: Plate capacitor

With the help of the code developed here, the electrostatic potential within a
plate capacitor can now be calculated. Figure 12.2 shows the result of this
calculation for different resolutions of the simulation, i.e. different numbers of
elements. By increasing the resolution, the simulation can be systematically
improved.

To calculate the capacitance, we now have to determine the charge on the
capacitor plates. The total charge Qα on the electrode α is obtained from
the surface charge given by Eq. (12.4). By integrating over the area of the
capacitor plates Aα, we obtain

Qα =

∫
Aα

d2 r σ(r⃗) = ε

∫
Aα

d2 r∇ΦN · n̂(r⃗). (12.5)

Here, the permittivity ε plays an important role for the unit of the charge.
We can now use the series expansion again. Only element type (1) contributes
to the integral, and here only the shape functions for which the derivative in
the y direction does not vanish, since ∇ΦN · n̂(r⃗) = ±∂ΦN/∂y. The sign is
reversed for the upper and lower capacitor plates. Non-vanishing contributions

106

0 1 2 3
x-Position (x)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y-
Po

sit
io

n
(

y)

0 10 20 30
x-Position (x)

1.0

0.5

0.0

0.5

1.0

El
ek

tro
st

at
isc

he
s P

ot
en

tia
l

 (V
)

(a) (b)

Figure 12.2: Electrostatic potential within the plate capacitor, calculated
with (a) 4× 4 nodes (18 elements) and (b) 32× 32 nodes (1922 elements). In
(a) the color coding shows the linear function within the elements.

come from the form functions N
(1)
0 and N

(1)
2 . We get∫ ∆x

0

dx
∂N

(1)
0

∂y
=

∫ ∆x

0

dx
1

∆y
=

∆x

∆y
(12.6)∫ ∆x

0

dx
∂N

(1)
2

∂y
=

∫ ∆x

0

dx

(
− 1

∆y

)
= −∆x

∆y
(12.7)

and thus for ∆x = ∆y
Q(n) = εt(a0 − a2) (12.8)

as the contribution of the element (n) to the charge on the electrode. Here,
the indices of the coefficients a0 and a2 denote the respective local node
indices. The quantity t is the depth of the simulation domain. Since we are
considering the problem here in two dimensions, all charges are effectively line
charges (per depth) and the factor t is needed to obtain an absolute charge.
Our plate capacitor is infinitely long in the third dimension. The factor εt
has the unit farad and is therefore a capacitance.

The capacitance of the capacitor is now given by C = Q0/∆Φ, where Q0

is the charge on one capacitor plate and ∆Φ is the (given) potential difference.
The second capacitor plate must carry the charge Q1 = −Q0. The code for
calculating the charge on the capacitor plates therefore looks like this:

1 def get_charge(potential_g , nb_nodes ,

2 top_left , top_right ,

3 bottom_left , bottom_right):

4 """

5 Compute charge on both capacitor plates.

107

6

7 Parameters

8 ----------

9 potential_g : array_like

10 Electrostatic potential

11 nb_nodes : tuple of ints

12 Number of nodes in the Cartesian directions

13 top_left : int

14 Leftmost node of the top electrode

15 top_right : int

16 Rightmost node of the top electrode

17 bottom_left : int

18 Leftmost node of the bottom electrode

19 bottom_right : int

20 Rightmost node of the bottom electrode

21

22 Returns

23 -------

24 charge_top : float

25 Charge (divided by permittivity and thickness) on top

26 plate

27 charge_bottom : float

28 Charge (divided by permittivity and thickness) on

29 bottom plate

30 """

31 Nx , Ny = nb_nodes

32 charge_top = 0.0

33 for i in range(top_left+1, top_right +1):

34 charge_top += \

35 potential_g[node_index(i, Ny -1, nb_nodes)] - \

36 potential_g[node_index(i, Ny -2, nb_nodes)]

37

38 charge_bottom = 0.0

39 for i in range(bottom_left +1, bottom_right +1):

40 charge_bottom += \

41 potential_g[node_index(i, 0, nb_nodes)] - \

42 potential_g[node_index(i, 1, nb_nodes)]

43

44 return charge_top , charge_bottom

Of course, we know what the capacitance of a plate capacitor looks like.
It is given by

C = ε
A

d
, (12.9)

where A = tL is the area of the capacitor plate and d is the distance between
the plates. (L is the length of the plates, see Fig. 12.1a.) We can write this
in dimensionless form as

C

εt
=
L

d
. (12.10)

108

10 1 100 101

Aspektverhältnis d/L

10 1

100

101

En
td

im
en

sio
na

lis
ie

rte
 K

ap
az

itä
t C

/
t

Analytisch L/d
Finite Elemente

Figure 12.3: Capacitance C of a plate capacitor as a function of the distance
between the plates d. Both axes are de-dimensionalized and show quantities
without units. The dashed line is the classical prediction for the capacity, the
blue line shows the simulation. The simulation box was always chosen to be
at least three times the plate length L or the distance between the plates d.
The plate length L was discretized with 8 elements.

We get the left side directly from our simulation. The result of the finite
element calculation is shown in Fig. 12.3 compared with this analytical
expression. You can see that the analytical expression only applies to small
aspect ratios d/L < 1. The derivation of this expression assumes that the
field lines are everywhere parallel and perpendicular to the capacitor plates.
For large distances between the capacitor plates, this is no longer the case and
stray fields at the edge of the plates begin to play a role in the capacitance.
These are not included in Eq. (12.9), but are modeled in the simulation.

Note: The system matrix of the finite element method is sparse. For
sparse matrices, there are special data structures that simplify the handling

109

of these matrices. These are implemented in the scipy.sparse package.
We can use these routines to construct a sparse system matrix:

1 from scipy.sparse import coo_matrix

2

3 def assemble_system_matrix(element_matrix_ll , nb_nodes):

4 """

5 Assemble system matrix from the element matrix

6

7 Parameters

8 ----------

9 element_matrix_ll : array_like

10 3 x 3 element matrix

11 nb_nodes : tuple of ints

12 Number of nodes in the Cartesian directions

13

14 Returns

15 -------

16 system_matrix_gg : numpy.ndarray

17 System matrix

18 """

19 Nx , Ny = nb_nodes

20

21 # Compute grid

22 grid_el = make_grid(nb_nodes)

23

24 # Get number of elements

25 nb_elements , nb_corners = grid_el.shape

26

27 # Spread out grid and element matrix such that they can

28 # be used as global node coordinates for the sparse

29 # matrix

30 grid1_ell = np.stack(

31 [grid_el , grid_el , grid_el], axis =1)

32 grid2_ell = np.stack(

33 [grid_el , grid_el , grid_el], axis =2)

34 element_matrix_ell = np.stack(

35 [element_matrix_ll]* nb_elements , axis =0)

36

37 # Construct sparse system matrix

38 # ‘coo_matrix ‘ will automatically sum duplicate entries

39 system_matrix_gg = coo_matrix(

40 (element_matrix_ell.reshape (-1),

41 (grid1_ell.reshape (-1), grid2_ell.reshape (-1))),

42 shape =(Nx*Ny, Nx*Ny))

43

44 return system_matrix_gg.todense ()

110

https://docs.scipy.org/doc/scipy/reference/sparse.html

This method replaces the above implementation of
assemble_system_matrix. For reasons of compatibility with the
rest of the implementation shown here, it returns a dense matrix at the
end, but you can continue to work with the sparse matrix. As part of the
application of coo matrix, the global node indices are used here as the
“coordinates” of the matrix entries. To do this, both the node indices
and the entries of the element matrix must be multiplied by the size of
the system matrix. This is done by the numpy.stack commands in these
code fragments.

111

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.html
https://numpy.org/doc/stable/reference/generated/numpy.stack.html

Chapter 13

Time-dependent problems

Context: Many of the problems we encounter, such as the diffusion
process already discussed, are time-dependent. So far, we have only
treated the stationary solution of linear problems. A treatment of the
initial value problem, which explicitly includes the time dependency,
requires corresponding integration algorithms.

13.1 Initial value problems

Typical time-dependent PDGLs have the form,

∂u

∂t
+ Lu(r⃗, t) = f(r⃗, t), (13.1)

where L is an operator of some kind, e.g. L = −∇·D∇ for diffusion processes.
The corresponding stationary solution, which is usually achieved for t→ ∞,
is given by Lu = 0. In the last chapters, we learned how to numerically
calculate such a stationary solution for linear and nonlinear problems.

Equation (13.1) is an initial value problem because the field u(r⃗, t) has to
be specified at a single point in time (usually t = 0). Then, one integrates
these initial value problems from this point in time into the future. A selection
of such time integration algorithms (or “time marching”, as it is also called)
will be discussed in this chapter. Before we get to that, however, we first need
to come back to the discretization of the spatial derivatives.

13.2 Spatial derivatives

We now again approximate the (now time-dependent) function u(r⃗, t) by a
series expansion uN(r⃗). In contrast to the previous chapters, we now assume

112

that the coefficients are no longer constant but time-dependent,

uN(r⃗, t) =
∑
n

an(t)φn(r⃗). (13.2)

Now we multiply the entire time-dependent PDE Eq. (13.1) with the basis
functions φn(r⃗) of the series expansion,(

φn,
∂uN
∂t

)
+ (φn,LuN) = (φn, f). (13.3)

In the previous chapters, we have already learned how to calculate the two
terms on the right-hand side of this equation. For linear equations, we get

(φn,LuN) =
∑
k

Knkak(t), (13.4)

(φn, f) = fn(t) (13.5)

where K is the known system matrix and f⃗(t) is the (now potentially time-
dependent) load vector. Now we introduce the time derivative into the scalar
product. This yields∑

k

Mnk
dak
dt

+
∑
k

Knkak(t) = fn(t), (13.6)

with Mnk = (φn, φk), the mass matrix. This is a system of coupled ordinary
differential equations. Thus, we have converted the PDE into a system of
ODEs by spatial discretization. For a Fourier basis, the mass matrix is
diagonal, for a finite element basis, it is sparsely populated but no longer
diagonal. However, we can formally multiply Eq. (13.6) from the left with
M−1 and obtain,

da⃗

dt
= −M−1 ·K · a⃗(t) +M−1 · f⃗(t) ≡ g⃗(⃗a(t), t). (13.7)

Note: Since the mass matrix does not change over time, M−1 can be
precalculated here. However, since M is usually sparse, it may also be
numerically more efficient to solve the corresponding system of equations
in each step. This is because the inverse of a sparse matrix is no longer
sparse. Thus, multiplication by M−1 requires ∼ N2 operations, while
solving the system of equations requires only ∼ N operations. The number
of operations required is called the complexity of an algorithm.

113

13.3 Runge-Kutta Methods

13.3.1 Euler Method

The equation (13.7) can be propagated in time. We assume that an(t) is
known, then we can develop an(t + ∆t) around t in a Taylor series. This
yields

a⃗(t+∆t) = a⃗(t) + ∆tg⃗(⃗a(t), t) +O(∆t2), (13.8)

where O(∆t2) denotes quadratic and higher terms that are neglected here.
Equation (13.8) can be used directly to propagate the coefficients a⃗ one step
∆t into the future. This algorithm is called explicit Euler integration. The
explicit Euler algorithm is not particularly stable and requires very small
time steps ∆t.

13.3.2 Heun method

Based on the Euler integration, we can construct a simple method with a
higher convergence order. The convergence order indicates how the error
decreases when the step size is reduced. For a first-order method, the error
decreases linearly with the step size, for a second-order method, quadratically.

In the Heun method, the function value at the time t+∆t is first estimated
using the Euler method. This means calculating

˜⃗a(t+∆t) = a⃗(t) + ∆tg⃗(⃗a(t), t). (13.9)

We then use the trapezoidal rule with this estimated function value to integrate
the function over a time step ∆t:

a⃗(t+∆t) = a⃗(t) +
∆t

2

(
g⃗(⃗a(t), t) + g⃗(˜⃗a(t+∆t), t)

)
(13.10)

The Heun method has quadratic convergence. Methods that first estimate
function values and then correct them are also called predictor-corrector
methods.

13.3.3 Automatic time step control

With the help of two integration methods with different convergence orders,
an automatic step size control can be realized in which the time step ∆t is
adjusted so that a certain error is not exceeded. The methods are particularly
interesting if the calculations of the lower order of error can be reused in the
calculation of the higher order of error, as is the case, for example, with the
Heun method.

114

When combining two methods (e.g. Euler and Heun), the error can be
estimated from the difference between the two integrations. Given a global
error bound, the time step can then be adjusted so that the error always
remains below this bound.

Note: Both the Euler integration and the Heun method belong to the
class of Runge-Kutta methods. There is a whole range of Runge-Kutta
methods with different orders of convergence. Of particular interest are
methods with automatic step size control as described here. In scipy in
particular methods with convergence orders 2/3 and 4/5 are implemented.
These can be used with the function scipy.integrate.solve ivp.

13.4 Stability analysis

Time propagation methods become unstable if the time step is too large. A
step size control is an automated method to prevent such instabilities.

To understand why such instabilities occur, we now analyze the one-
dimensional diffusion equation as an example,

∂c

∂t
= D

∂2c

∂x2
. (13.11)

A discretization of the spatial derivative with linear finite elements leads to

∂c

∂t
=

D

∆x2
(
c(x−∆x)− 2c(x) + c(x+∆x)

)
. (13.12)

Note: Actually, the mass matrix should appear on the left side of
Eq. (13.12). We neglect this here and approximate M = 1. This type of
approximation is called a lumped mass model.

We now write the function c(x) as an expansion in a Fourier basis, i.e.

c(x) =
∑
n

cn exp(iknx). (13.13)

This means that terms of the form c(x+∆x) become

c(x+∆x, t) =
∑
n

cn(t) exp
[
ikn(x+∆x)

]
=
∑
n

exp(ikn∆x)cn(t) exp(iknx).

(13.14)

115

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html

We now write Eq. (13.12) as

∂cn
∂t

=
D

∆x2
(
exp(−ikn∆x)− 2 + exp(ikn∆x)

)
cn(t)

=
2D

∆x2
(
cos(kn∆x)− 1

)
cn(t),

(13.15)

However, we can solve this equation analytically for a time interval ∆t,

cn(t+∆t) = cn(t) exp

[
2D

∆x2
(
cos(kn∆x)− 1

)
∆t

]
, (13.16)

whereas Euler integration yields

cn(t+∆t) ≈
[
1 +

2D

∆x2
(
cos(kn∆x)− 1

)
∆t

]
cn(t). (13.17)

The value of the term cos(kn∆x)− 1 lies between −2 and 0. This means that
we can propagate Eq. (13.16) for arbitrary ∆t without the concentration cn(t)
diverging in time. Except for kn = 0, the coefficients cn(t) decrease over time.

For the Euler method, Eq. (13.17), this is only the case if

µ =
D∆t

∆x2
<

1

2
. (13.18)

For µ > 1/2, some of the coefficients cn(t) increase with t and the algorithm
becomes unstable. The dimensionless number µ is called a Courant-Friedrichs-
Lewy (CFL) number and the condition Eq. (13.18) is called a CFL condition.
The exact form of the CFL condition depends on the PDGL and the algorithm.

Note: The CFL condition says that the maximum time step

∆t <
1

2D
∆x2 (13.19)

depends on the spatial discretization ∆x. If we make the spatial discretiza-
tion finer, we must also choose a smaller time step. Halving the spatial
discretization requires a time step that is a quarter smaller. This increases
the cost of a simulation of the same simulation duration by a factor of
8. Finely resolved simulations therefore quickly become numerically ex-
pensive. For methods with automatic step control, this adaptation of the
time step happens automatically.

116

Bibliography

M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford
University Press, 1989.

J. P. Boyd. Chebyshev and Fourier Spectral Methods. Dover Publications,
New York, 2000.

A. Einstein. Über die von der molekularkinetischen Theorie der Wärme
geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen.
Ann. Phys., 17:549, 1905.

R. M. Martin. Electronic Structure. Cambridge University Press, 2004.

M. H. Müser, S. V. Sukhomlinov, and L. Pastewka. Interatomic potentials:
achievements and challenges. Advances in Physics: X, 8(1):2093129, Jan.
2023.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York,
2nd ed edition, 2006.

117

	Introduction
	Models
	Particles
	Fields
	Which model is the right one?

	Differential equations
	Ordinary differential equations
	Linearity
	Order
	Systems

	Partial differential equations
	First order
	Second order

	Transport theory
	Diffusion and drift
	Diffusion
	Drift

	Continuity
	Drift
	Diffusion

	Charge transport
	Electrostatics
	Drift in an electric field
	Nernst-Planck equation
	Poisson-Nernst-Planck equations
	Poisson-Boltzmann equation
	Example: Supercapacitor

	Numerical solution
	Series expansion
	Residual
	A first example
	Numerical solution

	Function spaces
	Vectors
	Functions
	Basis functions
	Orthogonality
	Fourier basis
	Finite elements

	Approximation and interpolation
	Residual
	Collocation
	Weighted residuals
	Galerkin method
	Least squares

	Finite elements in one dimension
	Differentiability of the Basis Functions
	Galerkin method
	Boundary Conditions
	Dirichlet Boundary Conditions
	Neumann boundary conditions

	Assembly
	Shape functions
	Assembling the system matrix
	Nonuniform one-dimensional grids
	Element matrices
	Implementation

	Nonlinear problems
	Numerical quadrature
	Poisson-Boltzmann equation
	Implementation

	Newton-Raphson method
	Example: Poisson-Boltzmann equation

	Finite elements in two and three dimensions
	Differentiability
	Grid
	Triangulation
	Structuring

	Shape functions
	Galerkin method
	Boundary conditions
	Dirichlet boundary conditions
	Neumann boundary conditions

	Data structures & implementation
	Example problem
	Initialization
	System matrix
	Visualization
	Example: Plate capacitor

	Time-dependent problems
	Initial value problems
	Spatial derivatives
	Runge-Kutta Methods
	Euler Method
	Heun method
	Automatic time step control

	Stability analysis

