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Chapter 1

Introduction

Context: The term simulation refers to the numerical (computer-aided)
solution of models. In this introductory chapter, we discuss how models
of physical reality are build and present different classes of models. These
models are usually described mathematically by means of differential
equations, i.e. “simulation” is often (but not always) the numerical solution
of a set of ordinary or partial differential equations.

1.1 Models

Models are approximations for the behavior of the physical world at certain
length scales. For example, a model that explicitly describes atoms “lives”
on length scales on the order of nm and may be appropriate to describe the
growth of thin films in semiconductor manufacturing. We would not want to
describe a macroscopic system or phenomenon that lives on scales of ∼ mm
or beyond, such as how water flows out of a tap or how an airplane wing
bends during takeoff, with such a model. Key to carrying out simulations is
therefore the ability to match the physical phenomenon we want to describe
with the appropriate model and the mathematical method required for its
solution.

Note: While we could describe even macroscopic systems with atomic-
scale models, this is typically prohibited by the computer resources avail-
able to us. Macroscopic systems consist of more than 1023 (Avogadro’s
number) atoms, whose positions we would not be able to fit into present
day computers. In addition, the gist of the question we want to answer
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may be hidden in such a fine-grained atomic-scale model like the legendary
needle in a haystack.

Figure 1.1 shows on the vertical axis length scales and classes of models
that live on these scales. On the shortest length scale, a quantum mechanical
description is usually necessary. This means that if we want to resolve the
world with Å resolution, we find ourselves at the level of quantum mechanics
and all underlying models are of a quantum mechanical nature. Underlying
quantum mechanics is the Schrödinger equation, whose (approximate) solution
is implemented in various methods, such as density functional theory (Martin,
2004), a many-body description of the quantum mechanical electronic system.
If we get rid of modeling the electron explicitly, we arrive at a class of
simulation methods often referred to as molecular dynamics (Allen and
Tildesley, 1989). The key mathematical object in molecular dynamics is the
set of positions and velocities of all atoms, which means we have to introduce
three position and three velocity variables for each of the n interacting particles.
In contrast, in a quantum mechanical many-body description we are dealing
with a field with three n position variables each, namely Ψ(r⃗1, r⃗2, . . . , r⃗n; t).
This illustrates that formulating models on larger length scales requires some
form of coarse-graining, i.e. removing information from a smaller scale model.

Note:

• 1 Å = 10−10m

• The atoms that constitute our physical world are held together by
quantum mechanics. Models based on quantum mechanical princi-
ples are also called ab-initio (“from the beginning”) or first principles
models. The fundamental equation that describes quantum mechan-
ical objects is the Schrödinger equation. It is itself is in fact already
an approximation, despite the fact that models derived from it are
called first principles models!

• The single-particle Schrödinger equation is iℏ ∂
∂t
Ψ(r⃗, t) = ĤΨ(r⃗, t).

This is a partial differential equation for the location- and time-
dependent scalar matter field Ψ(r⃗, t), with Planck’s constant ℏ and
the Hamilton operator Ĥ, which contains the details of the model.
The solution of an equation of motion for many interacting parti-
cles, as described by a wavefunction with mathematical structure
Ψ(r⃗1, r⃗2, . . . , r⃗n; t), is incomparably more complicated.
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Figure 1.1: The vertical arrangement of the boxes corresponds to a length
scale, with the shortest scales shown on the bottom. The boxes themselves
show categories of models or simulation methods that are used on these scales.
In this class we deal with the discretization of fields and choose a specific use
case that falls into the local balance category.
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• “Semiclassical“ means that the motion of the particles is calculated
according to classical mechanics, but the interactions between the
particles are derived from quantum mechanical laws. This is of
course an approximation that needs to be justified.

• “Mesoscopic” means that the model has an internal length scale
and/or thermal fluctuations are important. These models usually
operate on length scales above the atomic scale (∼ nm) but below
the scales of our perception of the environment (∼ mm).

• “Balance” means that the core of the description is a conserved
quantity. Conserved are e.g. particle numbers or mass (that is
typically automatically conserved in models that have particles as
the core mathematical object). The balance equation or balancing
then simply counts the particles that flow into or out of a volume
element over a certain time interval. Other conserved variables that
can be balanced are momentum and energy. The balance equation
is also called the continuity equation.

At the level of semiclassical and classical mechanics, also referred to as
the kinetic level, models are either described by molecular dynamics or by the
equation of motion of the single-particle probability density in phase space
f(r⃗, p⃗) - with location r⃗ and momentum p⃗ as independent variables. In the
second case, we have a function f(r⃗(t), p⃗(t), t) which depends on time both
explicitly and implicitly via r⃗(t) and p⃗(t). Let us assume that we need to
discretize f(r⃗(t), p⃗(t), t) on regular grid of discrete sampling points. At a low
resolution of 10 points per variable, this corresponds to already 10, 000, 000
interpolation points. This may be manageable, but the resolution of such
a model would not particularly good. This undertaking is therefore rather
useless. We do not want to conceal the fact that there are methods for the
numerical solution to the two problems described above, but these will not
be discussed in detail in this class.

1.2 Particles

We can therefore roughly distinguish between two types of models: Models
that have individual discrete elements, for example particles (atoms, molecules,
grains, etc.), as their central mathematical objects and models that have con-
tinuous fields (electrostatic potential, ion concentrations, mechanical stresses
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and strains) as the central objects. In the first type of model, evolution
equations are formulated for discrete properties defined on the particles, such
as their positions r⃗i and velocities v⃗i.

For example, to describe the kinetics of these particles, we could solve
Newton’s equations of motion. This means that for each of the n particles
we have to formulate 6 ordinary differential equations (ODEs), which are
coupled to each other, namely:

˙⃗ri(t) = v⃗i(t) =
p⃗i(t)

mi

(1.1)

This is the equation for the trajectory of the particle i in space. Since r⃗i is a
vector, Eq. (1.1) is a system of 3 ordinary differential equations. differential
equations. The velocity v⃗i of the particle i at time t is also subject to a system
of differential equations, expressed most simply using the momentum p⃗i,

˙⃗pi(t) = F⃗i(t), (1.2)

where F⃗i(t) is the force acting of particle i at time t. Equation (1.2) describes
the temporal evolution of the momentum of the particle i. Equation (1.1) and
(1.2) are each 3× n coupled ordinary differential equations. If, for example,
we want to describe the movement of all molecules in a liter of water by a
simulation, this is impossible due to the large number of equations and we
must switch to a description using balance equations and fields.

Newton’s equations of motion (1.1) and (1.2) are by their nature basic
physical principles. They apply to atoms or planets. The nature of the force
itself, F⃗ij in the equations above, depends on the nature of the physical system
that we study. It is not necessarily a fundamental interaction, such as gravity,
but may emerge from a complex interplay of multiple physical mechanisms.
A simple example is the Lennard-Jones interaction with interaction energy

Vij = 4ε

( σ

rij

)12

−

(
σ

rij

)6
 (1.3)

and force

F⃗ij = −4ε

12(σ12

r13ij

)
− 6

(
σ6

r7ij

) r̂ij. (1.4)

We have written this in terms of a pair interaction and assumes that forces are
pair-wise additive, meaning the total force on particle i is given by F⃗i =

∑
j F⃗ij .

The quantity rij is the distance between the particles (here atoms or molecules)
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i and j, and r̂ij is the normal vector pointing from one to the other. The
term ∝ r−13 describes the repulsion of the atoms due to the Pauli exclusion
principle and the term ∝ r−7 describes the attraction of the atoms due to
the London dispersion interaction (Müser et al., 2023). Both interactions
are based on fundamental physical principles, but the formulation Eq. (1.4)
reduces these complex phenomena to a simple constituating law. Such laws are
often called constitutive laws. The numerical solution of Newton’s equations
of motion for atoms or molecules is called molecular dynamics simulation.

Note: The term constitutive law often appears in the context of field
theories. For the Lennard-Jones potential, this term is rather unusual,
but this law is nevertheless of a constitutive nature.

Another example of models with discrete elements are network models for
electrical circuits. Here, an element links an electrostatic potential difference
(energy difference) with a current, for example

i = u/R (1.5)

describes the current i that flows through a resistor R across which the
voltage drops by u. Such models are often referred to as “lumped-element
models”. Equation (1.5) naturally also has the quality of a constitutive law,
as complex electronic processes are behind the individual parameter R. For a
fully formulated model of an electric circuits we also need Kirchhoff’s rules,
that have the quality of balance equations. In Fig. 1.1, these models are
therefore referred to as global balance models. “Lumped-element models” also
lead to systems of ordinary differential equations, which are often solved
numerically by explicit time propagation. Well-known representatives of this
type of simulation software are, for example SPICE or MATLAB Simulink.

Such a global balance description is characterized by a lack of interest in
local resolution. We are not interested in densities, but only in total masses,
not in current densities but only in currents. This is best illustrated by the
above-mentioned resistor whose contacts are at different potentials, which
results in a current flow. We do not ask ourselves how the current is distributed
in the resistor. We do not even ask whether the resistor is homogeneous or
inhomogeneous. The model only requires the overall resistance R, essentially
modeling the resistor as a black box to which we assign the value of a single
parameter. This approach is discussed in detail in electrical engineering and
systems theory.
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1.3 Fields

However, if we now realize that our black box is only insufficiently described
with one parameter, then we need to replace it with a more complex models,
for example and equivalent circuit with details that resolve the internal state
of the component. This in turn can be taken so far, that a continuum is
created at the end - we have arrived at a local balance descriptions. Staying
with the example of flow, we need parameters such as conductivity (or for
fluids viscosity or diffusivity), which now describe the resistance to flow locally.
These parameters can be obtained from experiments or ab-initio simulations
but are required as input to (or the “parameterization” of) the local balance
description.

Local balance means that we can assign density, concentration, temper-
ature or similar quantity to each point in space. However, this means that
the temporal changes in the local degrees of freedom - i.e. the momentum or
velocity - are constrained by a local, thermodynamic-equilibrium condition. (In
thermodynamic equilibrium, the momentum satisfies a Maxwell-Boltzmann
distribution.) This local equilibrium does not mean that we no longer have
dynamics: If we think of a swarm of gas or liquid molecules, then their
individual velocities follow an equilibrium distribution function, but their
mean follows the balance equation. The dynamics are therefore averaged over
a huge number of these particles. Local balance also does not mean that
different temperatures or densities cannot exist at different locations. The
differences in these parameters are then the driving forces of the dynamics –
temperature gradients, density gradients, etc.

Such models fall into the category of field theories, and their mathematical
description is based on partial differential equations. (This is in contrast to
the ordinary differential equations of discrete models.) A transport theory is a
specific class of field theory that is based on the balancing mass, momentum
or energy and requiring constitutive laws for the description of the material
behavior. These constitutive laws contain transport parameters such as the
viscosity or diffusion constant. There are also field theories that have the
character of a basic physical principle. This is, for example, the Schrödinger
equation mentioned above or the Maxwell equations of electrodynamics.

1.4 Which model is the right one?

Choosing and formulating the right model is a form of art. Just because a
theory is called “quantum mechanics” (and leaves one or the other in awe
at its complexity), it does not necessarily offer the solution to the problem
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that we are trying to solve. Too much detail can even be a hindrance and
we must constantly ask ourselves how much detail is necessary in model and
simulation. We always need ask ourselves before we start a simulation: “Is a
simulation of this complexity really necessary, or can I simplify the problem?”
The simulation should be seen as a tool and not as an end in itself, according
to the American mathematician Richard Wesley Hamming (*1915, †1998):
“The purpose of computing is insight, not numbers”.
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Chapter 2

Transport theory

Context: We introduce the foundations of transport theory, in particular
how to balance conserved quantity. This leads to the continuity equation,
which describes conservation of a quantity. We start from an illustrating
example, the diffusion of suspended particles.

2.1 Diffusion and drift

Diffusive transport is easily accessible via the image of the “random walk”, a
random stochastic movement of particles. Random motion was first described
by the botanist Robert Brown (1773-1858) who observed random motion of
grains of pollen suspended in water. He lend his name for the now common
term Brownian motion or Brownian molecular motion. Robert Brown did not
know about molecules at his time. He initially believed that the movement
was due to active processes (the “force of life” of the pollen), but could then
show that inactive matter also exhibits this random motion. Today we know
that this movement is caused by thermal fluctuations, i.e. molecules that
randomly hit suspended particles and push them in random directions. This
explanation requires the existence of atoms and was popularized in 1905 by
Albert Einstein (Einstein, 1905).

Brownian molecular motion leads to diffusive transport. Figure 2.1 shows
a simple qualitative thought experiment. The configuration in Fig. 2.1a shows
a localization of the “pollen” in the left half of the domain shown. Due to
their random movement (shown as an example by the red line in Fig. 2.1a),
some of the pollen will cross the dashed boundary line into the right half and
also come back again. After a certain time, the initial state can no longer be
identified and the pollen are distributed throughout the domain (Fig. 2.1b).
The concentration is now constant. The pollen continue to move, but on

9



Figure 2.1: Illustration of diffusion. The “pollen” in (a) move randomly in the
domain. After a certain time (b), the initial concentration difference between
the left and right parts of the domain is equalized.

xj−2

r q
N

xj−1

r r
xj



p

xj+1

r
xj+2

r
Figure 2.2: Random movement in one dimension is given by transition
probabilities p (for a movement to the left) and q for a movement to the right.

average the same number of pollen move to the left as to the right. In the
case shown in Fig. 2.1a, this left/right symmetry is broken which leads to a
finite flux to the right.

This thought experiment can be easily formalized mathematically. We
consider a particle that performs a random movement in one dimension. We
start with a particle that randomly jumps back and forth on a straight line.
The straight line lies along the x-direction. The particle can only move to
predetermined positions on the x-axis, which we denote by xj and which are
equidistant, xj − xj−1 = ∆x for j ∈ Z (see Fig. 2.2).

A particle jumps to the left with a probability p and to the right with a
probability probability q. In addition, we have the probability of finding a
particle at time t at position x, given on the 1D grid by the function P (xj, t).

2.1.1 Diffusion

We first consider the case p = q = 1/2, i.e. that the probabilities for the
jumps to the left and right are identical. We assume that the particles jump
from site to its neighbors in a discrete, finite and constant time step τ . Then
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the probability of finding a particle at time t+ τ at location x is

P (x, t+ τ) =
1

2
P (x+∆x, t) +

1

2
P (x−∆x, t), (2.1)

where P (x−∆x, t) is the probability of finding a particle at position x−∆x
and P (x+∆x, t) the probability of finding a particle at x+∆x, both at time
t.

By subtracting P (x, t) on both sides and dividing by τ , we obtain the
following equivalent form:

P (x, t+ τ)− P (x, t)

τ
=

∆x2

2τ

P (x+∆x, t)− 2P (x, t) + P (x−∆x, t)

∆x2
(2.2)

We can now make the limit transition to the “continuum”. Taking τ → 0
and at the same time ∆x → 0 while maintaining

lim
∆x→0,τ→0

∆x2

2τ
= D (2.3)

yields
∂P (x, t)

∂t
= D

∂2P (x, t)

∂x2
. (2.4)

This is the well-known diffusion equation.

Note: Given a function f(x, y), we write the partial derivative of this
function with respect to x as

∂f

∂x
= ∂xf. (2.5)

The second derivative with respect to x is then

∂2f

∂x2
= ∂2

xf. (2.6)

Mixed derivatives are written as

∂2f

∂x∂y
= ∂x∂yf. (2.7)

The total derivative is indicated with the letter d, e.g.

df

dt
=

∂f

∂x

∂x

∂t
+

∂f

∂y

∂y

∂t
(2.8)
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for f = f(x, y), x = x(t) and y = y(t).
Sometimes the prime is used to a indicate derivative, e.g. f ′(x) =

df/ dx is the derivative of f . It is common to indicate the derivative with
respect to time by a dot, i.e. given f(t) the derivative ḟ(t) = df/ dt. We
will use these notations occasionally for brevity but point out that writing
the differential operator explicitly is less ambiguous. In particular, for
functions of more than one variable the differential operator allows us to
distinguish clearly between total and partial derivatives.

In multiple dimensions, the second derivative becomes the Laplace operator
∇2,

∂P (x, t)

∂t
= D∇2P (x, t). (2.9)

This equation is only correct if the diffusion constant is actually constant and
does not vary spatially.

Note: The operator∇ is a vector of the partial derivatives in the Cartesian
direction, i.e.

∇ =

∂/∂x
∂/∂y
∂/∂z

 . (2.10)

Applying it to a scalar function f(x, y, z) yields the gradient,

∇f = grad f =

∂f/∂x
∂f/∂y
∂f/∂z

 . (2.11)

The Laplacian is sometimes denoted by ∇2 (often in the anglo-saxon
literature) or ∆ (e.g. in the German literature). It is explicitly given by

∆ = ∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (2.12)

We will use ∇2 for the Laplacian throughout this text.

12



2.1.2 Drift

What happens if the probabilities for the jumps to the right or left are not
equal, p ̸= q (but of course p + q = 1 because we would be creating or
destroying particles if this condition was violated)? We still assume discrete,
uniform time steps and equidistant sampling points.

In this case, we have

P (x, t+ τ) = pP (x+∆x, t) + qP (x−∆x, t) (2.13)

which yields

P (x, t+ τ)− P (x, t)

τ
=

∆x2

τ

pP (x+∆x, t)− P (x, t) + qP (x−∆x, t)

∆x2
.

(2.14)
This can be simplified by writing

p =
1

2
− ε and q =

1

2
+ ε with 0 ≤ |ε| ≤ 1

2
or 2ε = q − p, (2.15)

where ε now indicates how much more likely a jump to right is than to the
left. A positive ε therefore means that the particles will move to the right on
average – this is called drift. We can now write Eq. (2.14) using ε, giving

P (x, t+ τ)− P (x, t)

τ
=
∆x2

2τ

P (x+∆x, t)− 2P (x, t) + P (x−∆x, t)

∆x2

− 2ε∆x

τ

P (x+∆x, t)− P (x−∆x, t)

2∆x
.

(2.16)

In the limit τ → 0 and ∆x → 0 we require

lim
∆x→0,τ→0

∆x2

2τ
= D and lim

∆x→0,τ→0

2ε∆x

τ
= v (2.17)

and thus obtain the drift-diffusion equation

∂P (x, t)

∂t
=

(
D

∂2

∂x2
− v

∂

∂x

)
P (x, t). (2.18)

Here, the first summand on the right-hand side again describes the diffusion
process. The second summand is a drift process and v is a constant drift
velocity. (From Eq. (2.17) and (2.18) it can be seen that the unit of v
corresponds exactly to a velocity.) It is the speed at which the particle moves
(on average) along the x-axis.
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Note: The motion of our particle was modeled using a probability density
P . In the thermodynamic limit, i.e. for many particles (usually of the order
of Avogadro’s number NA ∼ 1023), this probability becomes the (mass)
density ρ or the concentration (number density) c. We can therefore simply
replace the probability P in the above equations with a concentration c.
The reason for this is that we can write the concentration as an ensemble
mean,

c(x, t) = ⟨1⟩(x, t), (2.19)

where the mean value is defined as

⟨f(x)⟩(x, t) = f(x)P (x, t). (2.20)

2.2 Continuity

The equations (2.9) and (2.18) mix two concepts that we want to treat
separately now: The conservation of the number of particles (continuity) and
the process that leads to a flow of particles (diffusion or drift). The number of
particles is conserved simply because we cannot create atoms out of nothing
or destroy them into nothing. If we have a certain number of particles Ntot

in our overall system, we know that this number

Ntot(t) =

∫
d3 r c(r⃗, t) (2.21)

cannot change over time: dNtot/ dt = 0. The integral in Eq. (2.21) is carried
out over the total volume of our system, essentially the physical world of the
model.

For a small section of our physical world with volume V , the number of
particles can change because they can flow through the walls of this sample
volume (see Fig. 2.3). The change in the number of particles within V is
given by

ṄV =
∂

∂t

∫
V

d3 r c(r⃗, t) =

∫
V

d3 r
∂c

∂t
. (2.22)

However, the change ṄV must also be given by the number of particles flowing
through the side walls. For a cube (Fig. 2.3) with six walls, we can simply
count the number of particles through each of the walls per unit time. It is
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Figure 2.3: Particles can only leave the volume V through the side walls. The
change in the number of particles N over a time interval τ is therefore given
by the number of particles flowing through the walls. For this we need the
particle flows j. The number of particles flowing through a surface is then
given by j Aτ , where A is the area of the side wall.

approximately given

ṄV =− jrightAright − jleftAleft

− jaboveAabove − jbottomAbottom

− jfrontAfront − jbackAback

(2.23)

if the walls are small enough so that j is almost constant over A. We
have, in passing, introduced the current density j with unit number of
particles/time/area. The quantities jA are hence the number of particles
flowing per unit time through one of the walls with are A.

The scalar current density j describes the current flowing out of the surface.
For a general vectorial current density j⃗, which indicates the strength and
direction of the particle current, the total current density flowing out of the
volume through wall i is given by ji = j⃗i · n̂i, where n̂i is the normal vector
pointing outwards on wall i. The current through the wall is therefore only
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the component of j⃗ that is parallel to the surface normal (or perpendicular
to the wall). With this argument, we can generalize the expression for the
change in number of particles to

ṄV = −
∫
∂V

d2 r j⃗(r⃗) · n̂(r⃗) (2.24)

where ∂V denotes the surface area of the volume V . This equation explicitly
indicates that both the flux j⃗ and the surface normal n̂ depend on the position
r⃗ on the surface.

Alternatively, we can also group the change in the number of particles,
Eq. (2.23), as follows:

ṄV =− (jright + jleft)Aright/left

− (jtop + jbottom)Atop/bottom

− (jfront + jrear)Afront/back

(2.25)

Here we have used the fact that Aright = Aleft ≡ Aright/left. But now

jright = x̂ · j⃗(x+∆x/2, y, z) = jx(x+∆x/2, y, z) and

jleft = −x̂ · j⃗(x− δx/2, y, z) = −jx(x− δx/2, y, z)
(2.26)

since n̂ = x̂ for the right wall but n̂ = −x̂ for the left wall. Here, x̂ is the
normal vector along the x-axis of the coordinate system. The sign of the
surface normal is therefore reversed between the right and left surfaces. The
same applies to the top/bottom and front/back walls. We can further rewrite
this equation as

ṄV =− jx(x+∆x/2, y, z)− jx(x−∆x/2, y, z)

∆x
V

− jy(x, y +∆y/2, z)− jy(x, y −∆y/2, z)

∆y
V

− jz(x, y, z +∆z/2)− jz(x, y, z −∆z/2)

∆z
V,

(2.27)

since V = Aright/left∆x = Atop/bottom∆y = Afront/back∆z. However, the factors
in front of the volume V in Eq. (2.27) are now exactly the difference quotients
of the flows ji, in the x, y and z directions respectively. For small volumes
(and small ∆x, etc.) this becomes

ṄV = −
∫
V

d3 r∇ · j⃗(r⃗). (2.28)

We have just heuristically derived the divergence theorem (see also Eq. (2.30))
to express Eq. (2.24) as a volume integral.
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Note: We have expressed the divergence of a vectorial field f⃗(r⃗) through
the nabla operator,

∇ · f⃗ = div f⃗ =
∂fx
∂x

+
∂fy
∂y

+
∂fz
∂z

(2.29)

The divergence theorem is an important result of vector calculus. It
converts an integral over a volume V into an integral over the surface ∂V
of this volume. For a vector field f⃗(r⃗) applies:∫

V

d3 r∇ · f⃗(r⃗) =
∫
∂V

d2 r f⃗(r⃗) · n̂(r⃗) (2.30)

Here n̂(r⃗) is the normal vector which points outwards on the edge ∂V of
the volume V . Note that in one dimension this reduces to∫ b

a

dx
∂f

∂x
= f(b)− f(a), (2.31)

which is the integration rule we all know from high school. The divergence
theorem is hence a generalization of this integration rule to functions of
many variables.

Equation (2.22) and (2.28) together result in∫
V

d3 r

{
∂c

∂t
+∇ · j⃗

}
= 0. (2.32)

Since this applies to any volume V , the equation

∂c

∂t
+∇ · j⃗ = 0 (2.33)

must also hold. This equation is called continuity equation. It describes the
conservation of the number of particles or the mass of the system.

Note: In the derivation presented here, we have already implicitly used
the strong formulation and a weak formulation of a differential equation.
Equation (2.33) is the strong formulation of the continuity equation. This
requires that the differential equation is satisfied for every spatial point r⃗.
A corresponding weak formulation is Eq. (2.32). Here it is only required
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that the equation is fulfilled in a kind of mean value, here as an integral
over a sample volume V . Within the volume, the strong form need not
be satisfied, but the integral over deviations from the strong form (which
we will later call “residuum”) must vanish. The weak formulation is
thus an approximation for finite sample volumes V . In many numerical
approaches, a weak equation is solved exactly for a certain (approximate)
initial function.

We can still require that “particles” are produced within our sample
volume. In the current interpretation of the equation, this could be, for
example, chemical reactions that convert one type of particle into another.
An identical equation applies to heat transport, because just like particle
numbers, also the energy is a conserved quantity. Here, a source term would be
the production of heat, e.g. by a heating element. Given a flow Q (with unit
number of particles/time/volume), the particle or heat source, the continuity
equation can be extended to

∂c

∂t
+∇ · j⃗ = Q. (2.34)

The continuity equation with source term is also sometimes referred to as the
balance equation.

Note: Equation (2.34) describes the change in concentration c over time.
A related question is what the concentration c becomes after a very long
time - when a dynamic equilibrium has been reached and the concentration
no longer varies but is stationary. This equilibrium is then characterized
by the fact that ∂c/∂t = 0. The equation

∇ · j⃗ = Q (2.35)

is the stationary variant of the continuity equation.

2.2.1 Drift

Let us come back to transport processes, first to drift. If all particles in our
sample volume move with the velocity v⃗, this leads to a particle flow

j⃗Drift = cv⃗. (2.36)

When inserted into the continuity equation (2.33), this results in the drift
contribution to the drift-diffusion equation (2.18).
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2.2.2 Diffusion

From our thought experiment above, it is clear that the diffusion current
must always point in the direction of lower concentration, i.e. in the direction
opposite to the gradient ∇c of the concentration. The corresponding current
is given by

j⃗Diffusion = −D∇c. (2.37)

When inserted into the continuity equation (2.33), this results in the diffusion
equation (2.9).

The entire drift-diffusion equation therefore has the form

∂c

∂t
+∇ · (−D∇c+ cv⃗) = 0. (2.38)

In contrast to equations (2.9) and (2.18), this equation also applies if the
diffusion constant D or drift velocity v⃗ varies spatially.

Note: We have introduced transport theory here in terms of a particle
concentration c. However, similar continuity equations describes the
conservation of other quantities, in particular momentum and energy.
Continuity of momentum leads to the Navier-Stokes equations. The
continuity equation for the energy leads to the heat conduction equation.
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Chapter 3

Fluid mechanics

Context: This chapter introduces a specific form of the transport problem:
The Navier-Stokes equations, that describe how fluids flow.

3.1 Streaming velocity

The central quantity in fluid mechanics is the streaming velocity v⃗(r⃗). It is a
vector field that describes the average velocity of molecules in the (infinitesi-
mal) volume element at position r⃗. Mass is transported along the streaming
velocity field, which can be described by the mass flux

j⃗ρ(r⃗) = ρ(r⃗)v⃗(r⃗). (3.1)

Mass conservation is captured by the continuity equation

∂ρ

∂t
+∇ · (ρv⃗) = ∂ρ

∂t
+ v⃗ · ∇ρ+ ρ∇ · v⃗ = 0. (3.2)

A common approximation is to assume incompressibility, i.e. fluids where ρ
is constant. From Eq. (3.2) we immediately see, that this means

∇ · v⃗ = 0. (3.3)

The divergence of the streaming velocity vanishes in incompressible fluids.

3.2 Momentum conservation

The foundation of fluid dynamics is momentum conservation. Given fluid
density ρ(r⃗), the momentum density is the vector field j⃗ρ(r⃗) introduced in
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Eq. (3.1). The total momentum

p⃗tot =

∫
d3 r jρ(r⃗) (3.4)

is conserved. Similar to mass conservation, Eq. (2.21), this leads to a continuity
equation,

∂j⃗ρ
∂t

+∇ · ΠT = 0 (3.5)

where Π is a tensor containing the momentum flux in the x-, y- and z-
directions. We can integrate Eq. (3.5) over a finite volume V and use the
divergence theorem to obtain

∂p⃗V
∂t

+

∫
∂V

d2 rΠ · n̂ = 0 (3.6)

Identifying Π · n̂ as the force per unit area acting normal to the surface of the
volume V , we see that Eq. (3.6) is nothing else than Newton’s second law.
The key question that remains is that the forces that act on each volume
element, Π, look like.

Note: When writing an expression like ∇ · Π ≡ divΠ we follow the
convention that the ∇-operator acts on the left. In other words, the i-th
component of the divergence of Π is given by

[∇ · Π]i = ∂αΠαi, (3.7)

with summation over repeated indices (Einstein notation).

3.3 Convection

Momentum is convected with the flow, which is described by a drift term

ΠDrift = j⃗ρ ⊗ v⃗ = ρv⃗ ⊗ v⃗. (3.8)

What is still missing is a constitutive law that describes the behavior of the
fluid, given by the stress tensor τ . The overall momentum flux is the given
by Π = ΠDrift + τ .
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Note: The symbol ⊗ denotes the outer product. The outer product
between two vectors is a tensor with elements[

a⃗⊗ b⃗
]
ij
= aibj (3.9)

The quantity v⃗ ⊗ v⃗ is hence the symmetric tensorvxvx vxvy vxvz
vxvy vyvy vyvz
vxvz vyvz vzvz.

 (3.10)

Some authors simply omit the symbol ⊗ and write a⃗⊗ b⃗ = a⃗⃗b. Since this
is easily confused with the inner (or scalar) product a⃗ · b⃗, we will always
explicitly write the operation ⊗.

3.4 Newtonian fluids

The simplest constitutive law for fluids is given by

τ = P1− ηγ̇, (3.11)

where P is the fluid pressure, η the viscosity and

γ̇ = ∇⊗ v (3.12)

the shear-rate tensor.
The overall equation for momentum equation then becomes

∂j⃗ρ
∂t

+∇ ·
(
ρv⃗ ⊗ v⃗ + P1− ηγ̇

)
= 0 (3.13)

For incompressible flow, this can be simplified to

∂v⃗

∂t
+ (v⃗ · ∇) v⃗ +∇p− ν∇2v⃗ = 0. (3.14)

with kinematic viscosity ν = η/ρ and specific pressure p = P/ρ. We can
further rewrite the convective term to

∂v⃗

∂t
= v⃗ × (∇× v⃗) + ν∇2v⃗ −∇p. (3.15)
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Note: The triple cross product can be written as two triple dot products,

v⃗ × (∇× v⃗) =
1

2
∇v2 − (v⃗ · ∇) v⃗, (3.16)

as can be easily checked by writing out the equation component-wise.
Because of incompressibility, ∇2v2 = 0 and hence

v⃗ × (∇× v⃗) = − (v⃗ · ∇) v⃗, (3.17)

which allows to rewrite the Navier-Stokes equation in the form given by
Eq. (3.15).

Note that we can identify the curl of the velocity field as field of angular
velocities,

ω⃗ =
1

2
∇× v⃗, (3.18)

sometimes called the vorticity. The incompressible Navier-Stokes equations
become

∂v⃗

∂t
= 2v⃗ × ω⃗ + ν∇2v⃗ −∇p. (3.19)

3.5 Pressure Poisson equation

For compressible flow, the pressure P is tied to the density ρ through an
equation of state, that contains the compressibility of the fluid. For incom-
pressible for, the compressibility is essentially infinite an we need alternatives
routes for obtaining the pressure. Taking the divergence of Eq. (3.15) and
using incompressibility yields

∇2p = 2∇ · (v⃗ × ω⃗) , (3.20)

which is known as the pressure Poisson equation. This auxiliary equation
couples the pressure to the flow field v⃗(r⃗) at every instance in time.
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Chapter 4

Numerical solution

Context: We will now put the transport problem aside for a while and
devote ourselves to the numerical solution of differential equations. This
chapter illustrates the basic ideas behind numerical analysis of differential
equations. It introduces a few important concepts, in particular the series
expansion and the residual. The presentation here follows chapter 1 from
Boyd (2000).

4.1 Series expansion

In abstract notation, we are looking for unknown functions u(x, y, z, ...) that
solve a set of differential equations

Lu(x, y, z, . . .) = f(x, y, z, . . .) (4.1)

must be fulfilled. Here, L is a (not necessarily linear) operator that contains
the differential (or integral) operations. We now introduce an important con-
cept for the (numerical) solution of the differential equation: We approximate
the function u by a truncated series expansion of N terms. We write

uN(x, y, z, . . .) =
N∑

n=1

anφn(x, y, z, . . .) (4.2)

where the φn are called “basis functions”. We will discuss the properties of
these basis functions in more detail in the next chapter.

We can now write the differential equation as,

LuN(x, y, z, . . .) = f(x, y, z, . . .). (4.3)

24



This representation means that we have now replaced the question of the
unknown function u with the question of the unknown coefficients an. We
only have to let the differential operator L act on the (known) basis functions
φn and we can calculate this analytically.

What remains is to determine the coefficients an. These coefficients are
numbers, and these numbers can be calculated by a computer. Equation (4.2)
is of course an approximation. For certain basis functions, it can be shown
that these are “complete” and can therefore represent certain classes of
functions exactly. However, this is only true under the condition that the
series Eq. (4.2) is extended to N → ∞. For all practical applications (such as
implementations in computer code), however, this series expansion must be
aborted. A “good” series expansion approximates the exact solution already
at low N with a small error. With this statement, we would of course have
to specify how we want to quantify errors. Numerically, we then search for
the exact coefficients an that minimize the error. The choice of a good basis
function is non-trivial.

4.2 Residual

An important concept is that of the residual. Our goal is to solve Eq. (4.1).
The exact solution would be Lu−f ≡ 0. However, since we can only construct
an approximate solution, this condition will not be fulfilled exactly. We define
the residual as exactly this deviation from the exact solution, namely

R(x, y, z, . . . ; a0, a1, . . . , aN) = LuN(x, y, z, . . .)− f(x, y, z, . . .). (4.4)

The residual is therefore a kind of measure for the error we make. The strategy
for numerically solving the differential equation Eq. (4.1) is now to determine
the coefficients an in such a way that the residual Eq. (4.4) is minimal. We
have thus mapped the solution of the differential equation to an optimization
problem. The different numerical methods, which we will discuss in the next
chapters, are mainly determined by the specific optimization strategy.

Note: Numerical methods for optimization are a central core of the nu-
merical solution of differential equations and thus of simulation techniques.
There are countless optimization methods that work better or worse in
different situations. We will first treat such optimizers as “black boxes”.
At the end of the course, we will return to the question of optimization and
discuss some well-known optimization methods. The term minimization
method is often used synonymously with optimization methods. A good
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overview of optimization methods can be found in the book by Nocedal
and Wright (2006).

4.3 A first example

We now want to concretize these abstract ideas using an example and introduce
a few important terms. Let’s look at the one-dimensional boundary value
problem,

d2 u

dx2
− (x6 + 3x2)u = 0, (4.5)

with the boundary conditions u(−1) = u(1) = 1. (I.e. x ∈ [−1, 1] is the
domain on which we are looking for the solution.) In this case, the abstract
differential operator L takes the concrete form

L =
d2

dx2
− (x6 + 3x2) (4.6)

is given. The exact solution to this problem is given by

u(x) = exp
[
(x4 − 1)/4

]
. (4.7)

We now guess an approximate solution as a series expansion for this
equation. This approximate solution should already fulfill the boundary
conditions. The equation

u2(x) = 1 + (1− x2)(a0 + a1x+ a2x
2) (4.8)

is constructed in such a way that the boundary conditions are fulfilled. We
can express these as

u2(x) = 1 + a0(1− x2) + a1x(1− x2) + a2x
2(1− x2) (4.9)

to exponentiate the basis functions φi(x). Here φ0(x) = 1 − x2, φ1(x) =
x(1− x2) and φ2(x) = x2(1− x2). Since these basis functions are non-zero on
the entire domain [−1, 1], this basis is called a spectral basis. (Mathematically:
The carrier of the function corresponds to the domain.)

In the next step, we must find the residual

R(x; a0, a1, a2) =
d2 u2

dx2
− (x6 + 3x2)u2 (4.10)
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Figure 4.1: Analytical solution u(x) and “numerical” approximate solution
u2(x) of the GDGL (4.5).

minimize. For this we choose a strategy called collocation: We require that
the residual vanishes exactly at three selected points:

R(xi; a0, a1, a2) = 0 for x0 = −1/2, x1 = 0 und x2 = 1/2. (4.11)

Note: The disappearance of the residual at xi does not mean that u2(xi) ≡
u(xi), i.e. that at xi our approximate solution corresponds to the exact
solution. We are still restricted to a limited set of functions, namely the
functions covered by Eq. (4.8).

From the collocation condition we now get a linear system of equations
with three unknowns:

R(x0; a0, a1, a2) ≡− 659

256
a0 +

1683

512
a1 −

1171

1024
a2 −

49

64
= 0 (4.12)

R(x1; a0, a1, a2) ≡− 2(a0 − a2) = 0 (4.13)

R(x2; a0, a1, a2) ≡− 659

256
a0 −

1683

512
a1 −

1171

1024
a2 −

49

64
= 0 (4.14)

(4.15)

The solution of these equations results in

a0 = − 784

3807
, a1 = 0 and a2 = a0. (4.16)

Figure 4.1 shows the “numerical” solution u2(x) in comparison with the exact
solution u(x).

In the numerical example shown here, both the basis functions and the
strategy for minimizing the residual can be varied. In the course of this
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lecture, we will establish the finite elements as basis functions and use the
Galerkin method as minimization strategy. To do this, we must first discuss
properties of possible basis functions.

Note: The example shown here is a simple case of discretization. We have
gone from a continuous function to the discrete coefficients a0, a1, a2.
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Chapter 5

Function spaces

Context: Before we dive deeper into the numerical solution of partial
differential equations, we need to introduce a mathematical concept:
Function spaces, or more concretely Hilbert spaces. Function spaces are
useful because they formalize the series expansion and provide easy access
to the coefficients of a series expansion through the concept of basis
functions.

5.1 Vectors

As an introduction, let us recall the usual Cartesian vectors. We can represent
a vector a⃗ = (a1, a2, a3) as a linear combination of basis vectors ê1, ê2 and ê3,

a⃗ = a1ê1 + a2ê2 + a3ê3. (5.1)

The unit vectors ê1, ê2 and ê3 are of course the vectors that span the Cartesian
coordinate system. (In previous chapters, we also use the notation x̂ ≡ ê1,
ŷ ≡ ê2 and ẑ ≡ ê3.) The numbers a1, a2 and a3 are the components or
coordinates of the vector, but also the coefficients multiplying the unit vectors
in Eq. (5.1). In this sense, they are identical to the coefficients of the series
expansion, with the difference that the êis are orthogonal, i.e.

êi · êj = δij (5.2)

where δij is the Kronecker-δ. Two Cartesian vectors a⃗ and b⃗ are orthogonal if
the scalar product between them vanishes:

a⃗ · b⃗ =
∑
i

a∗i bi = 0 (5.3)

Using the scalar product, we can obtain the components as ai = a⃗ · êi. This
is a direct consequence of the orthogonality of the basis vectors êi.
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5.2 Functions

In the previous section, we claimed that the basis functions from Chapter 5
are not orthogonal. For this we need an idea for orthogonality of functions.
With a definition of a scalar product between two functions, we can then
define orthogonality as the vanishing of this scalar product.

We now introduce a scalar product on functions (pr function spaces).
Given two functions g(x) and f(x) on the interval x ∈ [a, b], define the scalar
product as

(f, g) =

∫ b

a

dx f ∗(x)g(x), (5.4)

where f ∗(x) is the complex conjugate of f(x). This scalar product or inner
product is a map to a real number with the properties

• Positive definite: (f, f) ≥ 0 and (f, f) = 0 ⇔ f = 0

• Sesquilinear: (αf + βg, h) = α∗(f, h) + β∗(g, h) and (f, αg + βh) =
α(f, g) + β(f, h)

• Hermitian: (f, g) = (g, f)∗

The scalar products Eq. (5.3) and (5.4) both fulfill these properties.

Note: The scalar product between two functions can be defined more
generally with a weight function w(x),

(f, g) =

∫ b

a

dx f ∗(x)g(x)w(x). (5.5)

The question of orthogonality between functions can thus only be answered
with respect to a certain definition of the scalar product. For example,
Chebyshev polynomials are othogonal with respect to a scale product with
weight function w(x) = (1− x2)−1/2. Within these notes, we will only use
the case w(x) = 1.

Other ways of writing the scalar product that are often found in the
literature are ⟨f, g⟩ or ⟨f |g⟩. The latter is particularly common in the
physics literature, in particular in quantum mechanics.
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5.3 Basis functions

Let us now return to the series expansion,

fN(x) =
N∑

n=1

anφn(x). (5.6)

The functions φn(x) are called basis functions. A necessary property of
the basis functions is their linear independence. The functions are linearly
independent if none of the basis functions themselves can be written as a
linear combination, i.e. in the form of the series expansion Eq. (5.6), of the
other basis functions. This means that it must be fulfilled that

N∑
n=1

anφn(x) = 0 (5.7)

if and only if all an = 0. Linearly independent elements form a basis.
This basis is called complete if all relevant functions (= elements of the

underlying vector space) can be represented by the series expansion (5.6).
(Proofs of the completeness of basis functions are complex and outside the
focus of these notes.) The coefficients an are called coordinates or coefficients.
The number of basis functions or coordinates N is called the dimension of
the vector space.

Note: A vector space is a set on which the operations of addition and
scalar multiplication are defined with the usual properties, such as the
existence of neutral and inverse elements and associative, commutative
and distributive laws. If this space is defined on functions, it is also
referred to as a function space. If there is also an inner product such as
Eq. (5.4), then we speak of a Hilbert space.

5.3.1 Orthogonality

Particularly useful basis functions are orthogonal. Using the scalar product,
we can now define orthogonality for these functions. Two functions f and g
are orthogonal if the scalar product vanishes, (f, g) = 0. A set of mutually
orthogonal basis functions satisfies

(φn, φm) = νnδnm, (5.8)

where δnm is the Kronecker-δ. For νn ≡ (φn, φn) = 1 the basis is called
orthonormal.
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Orthogonality is useful because it shows a way to obtain the coefficients
of the series expansion (5.6):

(φn, fN) =
N∑
i=1

ai(φn, φi) =
N∑
i=1

aiνiδni = anνn (5.9)

which yields the coefficients as

an =
(φn, fN)

(φn, φn)
. (5.10)

The coefficients are given by the projection (the scalar product) of the function
onto the basis vectors. Remember that the following also applies to Cartesian
vectors: an = a⃗ · ên. (The normalization factor can be omitted here because
ên · ên = 1, i.e. the Cartesian basis vectors are orthonormal!) The coefficient
given by Eq. (5.10) can be thought of as coordinates of the function, similar
to the coordinates in Cartesian space.

Note: A useful identity for an expansion into orthogonal bases is Parseval’s
theorem. Because scalar products between different basis functions vanish,
the square (or power) of a series expansion is given by

(fN , fN) =
N∑

n=1

|an|2νn, (5.11)

or for orthonormal basis functions

(fN , fN) =
N∑

n=1

|an|2. (5.12)

5.3.2 Fourier basis

An important set of basis functions is the Fourier basis,

φn(x) = exp (iqnx) , (5.13)

on the interval x ∈ [0, L] with qn = 2πn/L and n ∈ Z. The Fourier basis is
periodic on this interval and is shown in Fig. 5.1. It can easily be shown that

(φn, φm) = Lδnm, (5.14)
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Figure 5.1: Real part of the Fourier basis functions, Eq. (5.13), for n = 1, 2, 3, 4.
The higher order basis functions oscillate with a smaller period and represent
higher frequencies
.

so that the Fourier basis is orthogonal. The coefficients an of the Fourier
series,

f∞(x) =
∞∑

n=−∞

anφn(x), (5.15)

can thus be obtained as

an =
1

L
(φn, f∞) =

1

L

∫ L

0

dx f∞(x) exp (−iqnx) . (5.16)

This is the well-known formula for the coefficients of the Fourier series.

Note: Conceptually, the Fourier basis describes different frequency com-
ponents, while the basis of the finite elements described in the next section
describes spatial localization.

For real-valued function with f∞(x) ≡ f ∗
∞(x), we get

∞∑
n=−∞

anφn(x) ≡
∞∑

n=−∞

a∗nφ−n(x) (5.17)
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because φ∗
n(x) = φ−n(x). This means an = a∗−n is a necessary condition to

obtain a real-valued f(x). This has implications for truncating the Fourier
series to a finite number of terms N . In particular, we need to truncate
symmetrically, i.e.

fN(x) =

(N−1)/2∑
n=−(N−1)/2

an exp (iqnx) (5.18)

with odd N .

5.3.3 Finite elements

Another basis set that is important for numerical analysis is the finite-element
basis. In contrast to the Fourier basis, which only becomes zero at isolated
points in the entire domain, the finite element basis is localized in space and
is zero for large areas of the domain. It thus divides the domain into spatial
sections.

In its simplest form, the basis consists of localized piece-wise linear func-
tions, the “tent” functions,

φn(x) =


x−xn−1

xn−xn−1
for x ∈ [xn−1, xn]

xn+1−x

xn+1−xn
for x ∈ [xn, xn+1]

0 else

(5.19)

Here, the xn are the nodes (also known as grid points) between which the
tents are spanned. The functions are constructed in such a way that the
maximum value is 1 and

∫ L

0
dxφn(x) = (xn+1 − xn−1)/2. This basis is the

simplest form of the finite element basis and is shown in Fig. 5.2. Higher
order polynomials can be used for greater accuracy.

An important note at this point is that the basis of the finite elements
not is orthogonal. In our one-dimensional case, the scalar product does not
vanish for the nearest neighbors. This is the case because two neighbors each
have an overlapping rising and falling edge. One obtains

Mnn ≡ (φn, φn) =
1

3
(xn+1 − xn−1) (5.20)

Mn,n+1 ≡ (φn, φn+1) =
1

6
(xn+1 − xn) (5.21)

Mnm ≡ (φn, φm) = 0 for |n−m| > 1 (5.22)

for the scalar products.
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Figure 5.2: The base of the finite elements in its simplest, linear incarnation.
Each basis function is a “marquee” that runs over a certain interval between
0 and 1 and back again, see also Eq. (5.19).

Nevertheless, we can use these relations to determine the coefficients of a
series expansion,

fN(x) =
N−1∑
n=0

anφn(x), (5.23)

which yields

(φn, fN(x)) = an−1(φn, φn−1) + an(φn, φn) + an+1(φn, φn+1)

= Mn,n−1an−1 +Mnnan +Mn,n+1an+1.
(5.24)

We can express this as

(φn, fN(x)) = [M · a⃗]n (5.25)

where [v⃗]n = vn denotes the nth component of the vector enclosed by the two
square brackets [·]n. The matrix M is sparse. For an orthogonal basis, such
as the Fourier basis of section 5.3.2, this matrix is diagonal. For a basis with
identical distances xn+1 − xn = 1 of the grid points xn, the matrix has the
following form

M =



2/3 1/6 0 0 0 0 0 · · ·
1/6 2/3 1/6 0 0 0 0 · · ·
0 1/6 2/3 1/6 0 0 0 · · ·
0 0 1/6 2/3 1/6 0 · · ·
0 0 0 1/6 2/3 1/6 · · ·
0 0 0 0 1/6 2/3 · · ·
...

...
...

...
...

...
...

. . .


. (5.26)

To find the coefficients an, we must solve a (sparse) linear system of equations.
The matrix M is also called the mass matrix.

35



Note: Basis sets that are different from zero only at individual points
are called spectral basis sets. In particular, the Fourier basis is a spectral
basis set for periodic functions. The orthogonal polynomials are important
spectral basis sets that are also used in numerical analysis. For example,
Chebyshev polynomials are good basis sets for non-periodic functions
defined on closed intervals. The finite-element basis is not a spectral basis.
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Chapter 6

Approximation and
interpolation

Context: We now apply the idea of basis functions to approximate
functions. To do this, we return to the concept of the residual. The goal of
function approximation is that the approximated function minimizes the
residual. Building on these ideas, we will then discuss the approximation
of differential equations in the next chapter.

6.1 Residual

In the previous section, we described how a series expansion can be constructed
using basis functions. A typical series expansion contains a finite number of
elements N and has the form

fN(x) =
N∑

n=1

anφn(x), (6.1)

where the φn(x) are the basis functions introduced in the previous chapter.
We now want to approach the question of how we can approximate an

arbitrary function f(x) via such a basis function expansion. We define the
residual

R(x) = fN(x)− f(x), (6.2)

which vanishes at every point x if fN(x) ≡ f(x). For an approximation we
want to “minimize” this residual. (Minimizing in this context means to bring
it as close to zero as possible.) We are looking for the coefficients an of the
series, which approximate the function f(x) in the sense of minimizing the
residual.

37



At this point, it should be noted that the basis functions must be defined
on the same support as the target function f(x). For the approximation of a
periodic function f(x) we need a periodic basis.

6.2 Collocation

The first minimization strategy introduced here is collocation. This method
requires that the residual disappears at selected collocation points yn,

R(yn) = 0 or fN(yn) = f(yn). (6.3)

The number of collocation points must correspond to the number of coefficients
in the series expansion. The choice of ideal collocation points yn itself is
non-trivial, and we will only discuss specific cases here.

As a first example, we discuss an expansion into N finite elements. As
collocation points we choose the interpolation points of the basis, yn = xn. At
these sampling points, only one of the basis functions is non-zero, φn(yn) = 1
and φn(yk) = 0 if n ̸= k. This means that the condition

R(yn) = 0 (6.4)

trivially leads to
an = f(yn). (6.5)

The coefficients an are therefore the function values at the collocation points.
The approximation is a piece-wise linear function between the function values
of f(x).

As a second example, we discuss a Fourier series with corresponding N
Fourier basis functions,

φn(x) = exp (iqnx) . (6.6)

In the context of a collocation method, we require that the residual vanishes
on N equidistant points, R(yn) = 0 with

yn = nL/N, (6.7)

where L/N is the grid spacing. The collocation condition is

(N−1)/2∑
k=−(N−1)/2

ak exp (iqkyn) =

(N−1)/2∑
k=−(N−1)/2

ak exp

(
i2π

kn

N

)
= f(yn). (6.8)

Equations (6.8) can now be solved for ak. We use the fact that for equidistant
collocation points the Fourier matrix

Wkn = exp(i2πkn/N) =
[
exp(i2π/N)

]kn
(6.9)
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is unitary (except for a constant factor), i.e. its inverse is given by the adjoint:

N−1∑
n=0

WknW
∗
nl =

N−1∑
n=0

[
exp(i2π/N)

]n(k−l)
= Nδkl (6.10)

We can therefore multiply Eq. (6.8) by W ∗
nl and sum over n. This results in∑

n

∑
k

WknW
∗
nlak =

∑
k

Nakδkl = Nal. (6.11)

This means that the coefficients can be expressed as

al =
1

N

N∑
n=0

f

(
nL

N

)
exp

(
−i2π

ln

N

)
=

1

N

N∑
n=0

f(yn) exp (−iqlyn) (6.12)

for −(N − 1) ≤ l ≤ N − 1. This is the discrete Fourier transform (DFT) of
the function f(yn) discretized on the collocation points.

As a simple example, we show the approximation of the example function
f(x) = sin(2πx)3+cos(6π(x2−1/2)) using the Fourier basis and finite elements.
Figure 6.2 shows this approximation for 2N + 1 = 5 and 2N + 1 = 11 basis
functions with equidistant collocation points.

The figure shows that all approximations run exactly through the collo-
cation points, as required by the collocation condition. The two approaches
interpolate differently between the collocation points. The finite elements
lead to a linear interpolation between the points. The Fourier basis is more
complicated. The curve between the collocation points is called Fourier
interpolation.

6.3 Weighted residuals

We would now like to generalize the collocation method. To do this, we
introduce the concept of a test function. Instead of requiring that the residual
vanishes at individual points, we require that the scalar product

(v,R) = 0 (6.13)

with some function v(x) disappears. If Eq. (6.13) vanishes for any test
function v(x), then the “weak” formulation Eq. (6.13) is identical to the
strong formulation R(x) = 0. Equation (6.13) is called a “weak” formulation
because the condition is only fulfilled in the integral sense. In particular, it is
shown later that this weak formulation leads to a weak solution, which cannot
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Figure 6.1: Approximation of the periodic function f(x) = sin(2πx)3 +
cos(6π(x2−1/2)) on the interval [0, 1] with a Fourier basis and finite elements.
The function was approximated with 5 (top) and 11 (bottom) basis functions
using the collocation method. The round dots show the collocation points.
Both approximations run exactly through these collocation points. (The right
collocation point is identical to the left one due to the periodicity). The
approximation with N = 5 basis functions does not capture the two right
oscillations of the target function f(x) in both cases
.
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satisfy the original (strong) PDGL at every point. The condition (6.13) is
often called a weighted residual.

A special set of test functions leads directly to the collocation method.
We choose the set of N test functions

vn(x) = δ(x− yn) (6.14)

where δ(x) is the Dirac δ function and yn the collocation points. The condition
(vn, R) = 0 for all n ∈ [0, N − 1] leads directly to the collocation condition
R(yx) = 0.

Note: The Dirac δ function should be familiar from lectures on signal
processing. The most important property of this function is the filter
property, ∫ ∞

−∞
dx f(x)δ(x− x0) = f(x0), (6.15)

i.e. the integral over the product of the δ function gives the function value
at which the argument of the δ function disappears. All other properties
follow from this, e.g. ∫

dx δ(x) = Θ(x), (6.16)

where θ(x) is the (Heaviside) step function.

6.4 Galerkin method

The Galerkin method is based on the idea of using the basis functions φn of
the series expansion as test functions. This leads to the N conditions

(φn, R) = 0, (6.17)

which can be written as
(φn, fN) = (φn, f). (6.18)

For an orthogonal set of basis functions, this yields

an =
(φn, f)

(φn, φn)
. (6.19)

This equation has already been discussed in section 5.3. For a non-orthogonal
basis set, e.g. the basis of the finite elements, the Galerkin condition yields a
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system of linear equations,

N∑
m=1

(φn, φm)am = (φn, f), (6.20)

where the matrix Anm = (φn, φm) is sparse for the finite elements.
Let us now return to our example function f(x) = sin(2πx)3+cos(6π(x2−

1/2)). Figure 6.2 shows the approximation of this function with Fourier and
finite element basis sets and the Galerkin method. There are no collocation
points and the approximation using finite elements does not exactly match
the function to be approximated at the interpolation points. The function is
only approximated in the integral sense.

Note: The Galerkin condition (see also Eq. (6.17))

(φn, R) = 0, (6.21)

means that the residual is orthogonal to all basis functions. In other words,
the residual can only contain contributions to the function that cannot be
mapped with the given basis set. This implies that we can systematically
improve our solution by extending the basis set.

6.5 Least squares

An alternative approach to approximation is to minimize the square of the
residual, (R,R), also knows as a least squares approach. For a general series
expansion with N basis functions, we obtain

(R,R) = (f, f) + (fN , fN)− (fN , f)− (f, fN)

= (f, f) +
N∑

n=1

N∑
m=1

a∗nam(φn, φm)−
N∑

n=1

a∗n(φn, f)−
N∑

n=1

an(f, φn).

(6.22)

This error square is minimized if

∂(R,R)

∂ak
=

N∑
n=1

a∗n(φn, φk)− (f, φk) = 0 (6.23)

and
∂(R,R)

∂a∗k
=

N∑
n=1

an(φk, φn)− (φk, f) = 0. (6.24)
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Figure 6.2: Approximation of the periodic function f(x) = sin(2πx)3 +
cos(6π(x2−1/2)) on the interval [0, 1] with a Fourier basis and finite elements.
The figure shows an approximation 5 (top) and 11 (bottom) basis functions.
The coefficients were determined using the Galerkin method. The approxima-
tion with 5 basis functions does not capture the two right oscillations of the
target function f(x) in both cases.
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This expression is identical to Eq. (6.20) of the Galerkin method.
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Chapter 7

Fourier spectral methods

Context: We now develop the ideas for solving partial differential equa-
tions outlined in the previous chapters. In this chapter, we specifically
describe solution strategies using the Fourier basis. This leads to a solution
method that belongs to the class of spectral methods.

7.1 Differential operators

To solve differential equations, we now use exactly the same methods that we
developed in the previous chapter: Minimizing the residual using the Galerkin
method. Our residual now has the general form

R(x, y, z, . . . ; a0, a1, . . . , aN) = LuN(x, y, z, . . .)− f(x, y, z, . . .), (7.1)

where the unknown function uN is represented here as a series expansion into
a certain basis φn(x, y, z). The Galerkin method requires

(φn, R) = 0 (7.2)

for each n.
We now discuss the Fourier basis for periodic functions on x ∈ [0, L] in

one dimension,
φn(x) = exp(iqnx) (7.3)

with qn = 2πn/L. The operator L can contain any differential operations
that act on the basis functions, for example

d

dx
φn(x) = iqnφn(x) (7.4)

d2

dx2
φn(x) = −q2nφn(x). (7.5)
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The derivatives of the (Fourier) basis functions result in the same basis
function and an algebraic factor. It is also said that the basis functions
diagonalize the differential operator. (This will be different for the finite
elements discussed in the next chapter).

This property is particularly useful because, at least for linear differential
equations, the residual becomes a trivial series expansion again and we can
easily determine the coefficients using the orthogonality of the basis.

7.2 Poisson equation in one dimension

We use the (one-dimensional) Poisson equation,

∇2Φ ≡ d2Φ

dx2
= −ρ

ε
, (7.6)

as a demonstrator. Here ρ is a charge density and Φ is the electrostatic
potential. The residual is therefore

R(x) =
d2Φ

dx2
+

ρ

ε
, (7.7)

and the solution of Eq. (7.6) is given by R(x) = 0.
Formally, we now write the potential as the series expansion

Φ(x) ≈ ΦN(x) =

(N−1)/2∑
n=−(N−1)/2

anφn(x), (7.8)

whereby we will not explicitly specify the summation limits in the following.
We also expand the right-hand side of Eq. (7.6) into a series with the same
basis functions,

ρN(x) =

(N−1)/2∑
n=−(N−1)/2

bnφn(x). (7.9)

Substituting this into Eq. (7.7) we obtain

RN(x) = −
∑
n

anq
2
nφn(x) +

1

ε

∑
n

bnφn(x). (7.10)

We now multiply this from the left by the basis functions, (φk, RN ) (Galerkin
method) and, due to the orthogonality of the basis functions, we obtain the
equations

(φk, RN) = −Lq2kak + Lbk/ε. (7.11)
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The factor L appears because the basis functions are not normalized. The
condition (φk, RN) = 0 leads to ak = bk/(q

2
kε). The approximate solution of

the Poisson equation is thus given by

ΦN(x) =
∑
n

bn
q2nε

φn(x). (7.12)

This is the Fourier series of the solution.

7.3 Transition to the Fourier transform

The Fourier basis Eq. (7.3) is periodic on a finite domain of length L. If we
let the length L go to infinity, we get a formulation for non-periodic functions.
This leads directly to the Fourier transform.

We write the series expansion as

ΦN(x) =
N∑

n=−N

anφn(x) =
N∑

n=−N

an exp (iqnx) =
N∑

n=−N

∆q

2π
Φ̃(qn) exp (iqnx)

(7.13)
with ∆q = qn+1 − qn = 2π/L and rescaled coefficients Φ̃(qn) = Lan. Here,
only the factor 1 = L∆q/2π was inserted on the right-hand side of Eq. (7.13).
This now helps to form the limits L → ∞ and N → ∞. In this case, ∆q → dq
and the sum becomes the integral. This yields

Φ(x) =

∫ ∞

−∞

dq

2π
Φ̃(q) exp (iqx) , (7.14)

the inverse Fourier transform.
The (forward) transform is obtained via a similar argument. We now

know that

Φ̃(qn) = Lan = L
(φn,ΦN)

(φn, φn)
= (φn,ΦN) =

∫ L

0

dxΦN(x) exp (−iqnx) . (7.15)

In the limiting case L → ∞ and N → ∞ this becomes

Φ̃(q) =

∫ ∞

−∞
dxΦ(x) exp (−iqx) , (7.16)

of the Fourier transform. The Fourier transform is useful to obtain analytical
solutions for partial differential equations on infinite domains.
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Note: A tilde f̃(q) denotes the Fourier transform of a function f(x). The
Fourier transform is a function of the wave vector q. In contrast, from
the Fourier series we obtain countable coefficients an. The reason for this
is the periodicity of the function.

7.4 Poisson equation in multiple dimensions

Similar to how we constructed an approximate solution for a differential
equation using a series expansion, we can use the approach Eq. (7.14) to
obtain analytical solutions. In this section, this is demonstrated using the
Poisson equation in three dimensions.

In three dimensions, the Poisson equation is

∇2Φ ≡ ∂2Φ

∂x2
+

∂2Φ

∂y2
+

∂2Φ

∂z2
= −ρ

ε
. (7.17)

In contrast to Eq. (7.6), the partial derivative ∂ now appears here because
Φ(x, y, z) depends on three variables (the Cartesian coordinates).

The generalization of the Fourier basis and thus also of the Fourier trans-
form to three dimensions is trivial. A basis is obtained by multiplying basis
functions in the Cartesian directions (x, y and z). Usually, you now need three
indices for the coefficients, which denote the basis in x, y and z respectively.
The result is a series expansion

ΦNMO(x, y, z) =

(N−1)/2∑
n=−(N−1)/2

(M−1)/2∑
m=−(M−1)/2

(O−1)/2∑
o=−(O−1)/2

anmoφn(x)φm(y)φo(z)

≡
(N−1)/2∑

n=−(N−1)/2

(M−1)/2∑
m=−(M−1)/2

(O−1)/2∑
o=−(O−1)/2

anmoφnmo(x, y, z)

(7.18)

with (possibly different) truncation orders N , M and O. The basis set is given
here by the functions φnmo(x, y, z) = φn(x)φm(y)φo(z). Orthogonality of this
basis set is trivially derived from the orthogonality of the one-dimensional
basis functions φn(x). The generalization of the Fourier transform follows
directly from this. The Fourier inverse transform is written as

Φ(x, y, z) =

∫ ∞

−∞

d3 q

(2π)3
Φ̃(qx, qy, qz) exp

(
iqxx+ iqyy + iqzz

)
, (7.19)
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where the Fourier transform Φ̃ now naturally depends on three wave vectors
qx, qy and qz. The differential operator d3 q = dqx dqy dqz is a shorthand
notation for three-dimensional integration.

We can now insert Eq. (7.19) into the PDGL Eq. (7.17) and obtain

R(r⃗) =

∫ ∞

−∞

d3 q

(2π)3

[(
−q2x − q2y − q2z

)
Φ̃(q⃗) +

ρ̃(q⃗)

ε

]
exp (iq⃗ · r⃗) = 0 (7.20)

with r⃗ = (x, y, z) and q⃗ = (qx, qy, qz). This equation must be fulfilled for every
x, y, z and therefore the argument of the integration must disappear, i.e.

−q2Φ̃(q⃗) +
ρ̃(q⃗)

ε
= 0. (7.21)

Note: An alternative argument is obtained by writing the Fourier trans-
form of R(x, y, z):

R(q′x, q
′
y, q

′
z) =

∫
d3 r R(r⃗) exp

(
−iqxx− iqyy − iqzz

)
. (7.22)

This contains terms of the form∫ ∞

−∞
dx exp

(
i(qx − q′x)x

)
= 2πδ(qx − q′x), (7.23)

which are expressions of the orthogonality of the basis functions. Since
the basis functions are now “parameterized” with a continuous qx (instead
of a discrete n), a Dirac δ function is obtained instead of the Kronecker δ
in the orthogonality relation.

Equation (7.21) can easily be solved analytically. This yields

Φ̃(q⃗) =
ρ̃(q⃗)

εq2
(7.24)

with q = |q⃗|. This is equivalent to solving Eq. (7.12) for the Poisson equation
on a periodic domain. The difficulty now lies in evaluating the back and forth
transformation for a given ρ(x, y, z).

Example: As an example, we now consider the solution for a point charge
Q at the origin,

ρ(x, y, z) = Qδ(x)δ(y)δ(z). (7.25)
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The Fourier transform of the charge density ρ is obtained from Eq. (7.16),

ρ̃(qx, qy, qz) = Q. (7.26)

I.e. the Fourier transform of the electrostatic potential is given by (see
Eq. (7.24))

Φ̃(q⃗) =
Q

εq2
, (7.27)

and thus the representation in real space is

Φ(r⃗) =

∫ ∞

−∞

d3 q

(2π)3
Q

εq2
exp (iq⃗ · r⃗)

=
Q

(2π)3ε

∫ ∞

0

dq

∫ 2π

0

dϕ

∫ 1

−1

d(cos θ) exp (iqr cos θ)

(7.28)

where d3 q = q2 dq dϕ d(cos θ) with azimuth angle ϕ and elevation angle
θ, was used (see also Fig. 7.1). We require here (without limiting the
generality) that r⃗ points in the direction of the zenith.

One obtains

Φ(r⃗) =
Q

(2π)2ε

∫ ∞

0

dq

∫ 1

−1

d(cos θ) exp (iqr cos θ)

=
Q

(2π)2ε

∫ ∞

0

dq
exp(iqr)− exp(−iqr)

iqr

=
Q

(2π)2ε

∫ ∞

−∞
dq

sin qr

qr

=
Q

4πεr
,

(7.29)

where
∫
dx sinx/x = π was used. This is the known solution for the

electrostatic potential of a point charge. It is also called the fundamental
solution or Green’s function of the (three-dimensional) Poisson equation.
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Figure 7.1: Volume element for integration in spherical coordinates.
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Chapter 8

Discrete convolutions

Context: This chapter revisits the discrete Fourier transform (DFT)
and illustrates how it can be used for the efficient computation of cyclic
convolutions. Nonlinear terms in partial differential lead to noncyclic
convolutions in Fourier spectral methods. Direct application of the DFT
then yield aliasing errors, which can be corrected through dealiasing
procedures.

8.1 Discrete Fourier transform

The Fourier series represents functions on finite domains of length L as

f(x) =
1

L

∞∑
n=−∞

f̃(qn) exp (iqnx) (8.1)

with qn = 2πn/L. The inverse transform is given by

f̃(qn) =

∫ L

0

dx f(x) exp (−iqnx) . (8.2)

We now evaluate the Fourier series only on discrete, equidistant sampling
points xk = kL/N . The inverse transform Eq. (8.2) then becomes

f̃(qn) =
L

N

N−1∑
k=0

f(xk) exp (−iqnxk) , (8.3)

where the sum is the discrete variant of
∫
dx ≈

∑
∆x with grid spacing

∆x = L/N . The phase-factor qnxk = 2πkn/N is an integer multiple of 2π if n
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is an integer multiple of N , hence f̃(qn+αN ) = f̃(qn) because k(n+αN)/N =
kn/N + kα for integer α ∈ Z. Formally this means that Eq. (8.1) diverges.
This is consistent with the interpretation that the discretely sampled f(xk)
is a convolution of f(x) with a Dirac comb. We can truncate the forward
transform to

f(xk) =
1

L

M+N−1∑
n=M

f̃(qn) exp (iqnxk) =
M+N−1∑
n=M

Wknf̂n, (8.4)

where f̂n = f̃(qn)/L and we are using the DFT-matrix Wkn = exp(i2πkn/N),
see also Eq. (6.9). This indeed yields the correct discretely sampled function,
as can be seen by inserting the inverse transform Eq. (8.5) into Eq. (8.4).
The choice of M ∈ Z in Eq. (8.4) remains completely arbitrary, but a typical
choice is M = 0. Equation (8.4) is called the discrete Fourier transform
(DFT) with inverse Eq. (8.5) which can be rewritten to

f̂n =
1

N

N−1∑
k=0

W ∗
nkf(xk). (8.5)

The DFT is typically computed using a fast Fourier transform algorithm
(FFT), that reduces the computational complexity from O(N2) of a naive
implementation of Eq. (8.4) to O(N logN).

8.2 Cyclic convolutions

The FFT is useful to reduce the complexity of computing cyclic convolutions
from O(N2) to O(N logN). A cyclic convolution of the discrete series an and
bn is given by

ck =
N−1∑
n=0

anbA(k−n) (8.6)

where A(m) = m+ αN with α ∈ Z such that 0 ≤ A(m) < N . We can insert
the DFT expression, Eq. (8.4), which automatically fulfills the cyclic property
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to obtain

ck =
1

N2

N−1∑
n=0

N−1∑
m=0

Wnmâm

N−1∑
l=0

Wk−n,lb̂l

=
1

N2

N−1∑
m=0

N−1∑
l=0

âmWklb̂l

N−1∑
n=0

Wn,m−l

=
1

N2

N−1∑
m=0

N−1∑
l=0

âmWklb̂lNδm,l

=
1

N

N−1∑
m=0

Wkmâmb̂m,

(8.7)

which is the discrete Fourier transform representation of the product, i.e.

ĉm = âmb̂m. (8.8)

This means the convolution requires an element-wise product with com-
plexity O(N), plus three fast Fourier transforms, which all have complexity
O(N logN).

8.3 Nonlinear terms and aliasing

We now discuss the treatment of nonlinear terms in numerical solution of
partial differential equations with Fourier spectral methods. As an example,
let us regard the simple multiplication of two functions,

h(x) = f(x)g(x). (8.9)

We expand both f(x), g(x) and h(x) into a truncated Fourier series, i.e. we
write

f(x) ≈
N∑

n=−N

ân exp (iqnx) , (8.10)

g(x) ≈
N∑

m=−N

b̂m exp (iqmx) , (8.11)

h(x) ≈
N∑

k=−N

ĉk exp (iqkx) . (8.12)
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To simplify notation, we use N to denote the truncation of the sums which
now run over 2N + 1 terms.

Inserting into Eq. (8.9) yields

h(x) =
N∑

n=−N

N∑
m=−N

ânb̂m exp (iqn+mx) . (8.13)

This means, that h(x) is expressed as a truncated Fourier series with frequen-
cies qn+m from range −2N ≤ n+m ≤ 2N . However, we can expand h(x) in
the original range of frequencies from Eq. (8.12) as follows.

The discrete form of this equation can be obtained from the Galerkin
method, i.e. by multiplying with exp (iqkx) from the left, which yields

ĉk =
1

L

(
exp(iqkx), h(x)

)
=

N∑
n=−N

N∑
m=−N

ânb̂mδk,n+m =
N∑

n=−N

ânb̂k−n, (8.14)

and thus

h(x) =
N∑

k=−N

N∑
n=−N

ânb̂k−n︸ ︷︷ ︸
ĉk

exp (iqkx) . (8.15)

An important observation is that ĉk is nonzero in the range −2N ≤ k ≤ 2N ,
but we truncated the sum at N . Since b̂m in Eq. (8.8) is not cyclic, using the
discrete Fourier transform to compute this convolution introduces an error.
This type of numerical error is called aliasing.

Aliasing can be removed from the cyclic convolution by zero padding the
two vectors. We set ân = 0 and b̂n = 0 for n > K. The value of ĉk is then
exact for k ≤ K if 2K ≤ N + (N − K), yielding K ≤ 2N/3 (see Fig. 8.1
for an illustration). This means we can compute the convolution, Eq. (8.14),
using the FFT for the cyclic convolution at the expanse of discarding 1/3 of
the wavevectors. This is called the 2/3 rule (Orszag, 1971).
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-1 0 1 2 -22 n=-2 -11

1 0 -1 -2 2-2 n=2 1-1

N=3, K=2
N N-K

K K

Figure 8.1: Example of a discrete convolution. Boxes that are vertically
aligned are multiplied with each other. n indicates the index of the entry
in the vectors ân (top) and b̂n (top) that are multiplied with each other,
see Eq. (8.14). The crossed-out boxes are the zero-padded region. The
gray boxes indicate the cyclic (periodic) continuation of the convolution
computed with the FFT. Periodic interaction or “aliasing” is eliminated if
K +K ≤ N + (N −K), leading to the 2/3 rule.
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Appendix A

Differential equations

Context: Most of the phenomena we encounter in engineering are very
well described by differential equations. We remember the discrete network
models from electrical engineering and systems theory. They are described
by a system of linear ordinary differential equations with time as an
independent variable. described. We also remember the diffusion process,
such as the heat transport in a component on a heat sink that is exposed
to a heat source. This phenomenon is best described using a partial
differential equation (partial differential equation). In this chapter, we
deal with an abstract classification of differential equations. The diffusion
process will be repeated in more detail in the next chapter.

A.1 Ordinary differential equations

We recall the classification (properties) of ordinary differential equations
(ODEs) and recognize the different types of differential equations. For all
these differential equations, we are always interested in a solution for a certain
initial value (or boundary value), e.g. x(t = 0) = x0 etc. This initial value is
always part of the definition of the differential equation.

A.1.1 Linearity

A linear differential equation is, for example

mẍ(t) + cẋ(t) + kx = f(t) (A.1)

which describes the damped and driven harmonic oscillator, while

d2 x

dt2
+ µ(x2 − 1)

dx

dt
+ x = 0 (A.2)

57



is a non-linear equation of motion for x. It describes the so-called van der
Pol oscillator. The non-linearity can be recognized here by the fact that x2

multiplies the derivative dx/ dt.

Note: The first or higher order derivative is a linear operation, since

dn

dxn
λf(x) = λ

dn

dxn
f(x) (A.3)

for a constant λ and

dn

dxn

[
f(x) + g(x)

]
=

dn

dxn
f(x) +

dn

dxn
g(x). (A.4)

Time derivatives are displayed with a dot,

ẋ(t) =
d

dt
x(t). (A.5)

For functions of a variable, the derivative is often displayed with a dash,

f ′(x) =
d

dx
f(x). (A.6)

This is no longer possible for functions with several variables. We will
therefore always explicitly use the differential operator here.

A.1.2 Order

The order of a differential equation is given by the highest derivative that
appears in the equation. Eq. (A.1) and Eq. (A.2) are examples of second-order
differential equations.

A.1.3 Systems

A system of first-order differential equations is formed, for example, by the
equations

dx

dt
=x(m− ny), (A.7)

dy

dt
=− y(γ − δx), (A.8)

the well-known Räuber-Beute equations or Lotka-Volterra equations. Equa-
tions (A.7) and (A.8) are still non-linear.
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Differential equations of higher order can be rewritten into a system of
1st order equations. In the example of the damped harmonic oscillator,

mẍ(t) + cẋ(t) + kx = f(t), (A.9)

we replace ẋ = y and thus obtain two first-order equations instead of the
original second-order equation, namely

ẋ =y (A.10)

mẏ =− cy − kx+ f(t) (A.11)

A.2 Partial differential equations

Partial differential equations (PDEs) are differential equations with more
than one independent variable. As an example, we imagine a time-dependent
heat transport problem in one dimension. This is represented by a diffusion
equation for the local temperature of the system. The temperature is therefore
represented as a function of two independent variables, the time t and the
spatial position x, T (x, t). The time evolution of the temperature is given by

∂T (x, t)

∂t
= κ

∂2T (x, t)

∂x2
, (A.12)

where κ denotes the heat conduction coefficient. This equation was developed
by Joseph Fourier (*1768, †1830), whom we will encounter again during this
course.

Note: In Eq. (A.12) ∂/∂t denotes the partial derivative. This is the
derivative with respect to one of the arguments (here t), i.e. the variation
of the function if all other arguments are kept constant. With ODEs, in
contrast to PDEs, only derivatives with respect to one variable (usually
the time t) occur, which are then denoted by the differential operator
d/ dt.

A.2.1 First order

Quasilinear PDEs of the first order, i.e. equations of the form

P (x, t;u)
∂u(x, t)

∂x
+Q(x, t;u)

∂u(x, t)

∂t
= R(x, t;u), (A.13)
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for an (unknown) function u(x, t) and the initial condition u(x, t = 0) = u0(x)
can be systematically traced back to a system of coupled first-order ODEs.
We want to investigate this important property.

Note: In Eq. (A.13) a representation with two variables x and t was
chosen for illustration. In general, we can write∑

i

Pi({xi};u)
∂u({xi})

∂xi

= R({xi};u) (A.14)

The notation used here is u({xi}) = u(x0, x1, x2, . . .), i.e. the curly
brackets denote all degrees of freedom xi.

Equation (A.13) can be transformed to a system of ODEs. This is called
the method of characteristics. We can then apply the formalisms (analytical
or numerical) for solving systems of ODEs that we learned about in the
lecture “Differential Equations”.

We proceed as follows:

1. First, we parameterize the independent variables in Eq. (A.13) with a
parameter s according to x(s) and t(s).

2. We then form the total derivative of u(x(s), t(s)) to s

du(x(s), t(s))

ds
=

∂u(x(s), t(s))

∂x

dx(s)

ds
+

∂u(x(s), t(s))

∂t

dt(s)

ds
. (A.15)

3. By comparing the coefficients of the total derivative (A.15) with the
PDE (A.13), you can see that this DGL is solved exactly when

dx(s)

ds
= P (x, t, u), (A.16)

dt(s)

ds
= Q(x, t, u) und (A.17)

du(s)

ds
= R(u(s)). (A.18)

is fulfilled. This describes the solution along certain curves in the
(x, t)-plane.

We have thus converted the PDE into a set of coupled first-order ODEs,
Eq. (A.21)-(A.23).
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Example: The transport equation

∂u(x, t)

∂t
+ c

∂u(x, t)

∂x
= 0 (A.19)

with the initial condition u(x, t = 0) = u0(x) is to be solved. We proceed
according to the recipe above:

1. We parameterize the variables x and t with the help of a new variable
s, i.e. x(s) and t(s). We are now looking for an expression with
which we can determine x(s) and t(s).

2. We now ask how the function u(x(s), t(s)) behaves. This function
describes the change in an initial value u(x(0), t(0)) with the variable
s. The total derivative becomes

du(x(s), t(s))

ds
=

∂u

∂t

dt(s)

ds
+

∂u

∂x

dx(s)

ds
. (A.20)

3. The total derivative is identical to the partial differential equation
that we want to solve if

dx(s)

ds
= c and (A.21)

dt(s)

ds
= 1. (A.22)

In this case, the following applies

du(s)

ds
= 0. (A.23)

4. The general solutions for the three ordinary differential equa-
tions (A.21)-(A.23) are given by

x(s) = cs+ const., (A.24)

t(s) = s+ const. and (A.25)

u(s) = const. (A.26)

5. With the initial conditions t(0) = 0, x(0) = ξ and u(x, t = 0) = f(ξ)
you get t = s, x = ct+ ξ and u = f(ξ) = f(x− ct),

The initial condition f(ξ) is transported with the speed c in the positive
x-direction. The solution for u remains constant, as the derivative of u is
zero, so u retains the value given by the initial condition. The field u(x, 0)
is therefore shifted at a constant speed c: u(x, t) = u(x− ct, 0).
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A.2.2 Second order

Examples of second-order PDEs are the...

• ...wave equation:
∂2u

∂t2
− ∂2u

∂x2
= 0 (A.27)

• ...diffusion equation (which we will look at in more detail here):

∂u

∂t
− ∂2u

∂x2
= 0 (A.28)

• ...Laplace equation (which we will also get to know better):

∂2u

∂x2
+

∂2u

∂y2
= 0 (A.29)

The second order here refers to the second derivative. These examples are
formulated for two variables, but these differential equations can also be
written down for more degrees of freedom.

For two variables, the general form of second-order linear PDEs is

a(x, y)
∂2u

∂x2
+ b(x, y)

∂2u

∂x∂y
+ c(x, y)

∂2u

∂y2
= F

(
x, y;u,

∂u

∂x
,
∂u

∂y

)
, (A.30)

where F itself must of course also be linear in the arguments if the entire
equation is to be linear. We now classify 2nd order PDEs, but note that this
classification is not exhaustive and that it only applies pointwise. The latter
means that the PDE can fall into a different classification at different points
in space.

We first assume that F = 0 and a, b, c are constant. Then we get:

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
= 0. (A.31)

We rewrite this equation as the quadratic form(
∂/∂x
∂/∂y

)
·

(
a b/2
b/2 c

)
·

(
∂/∂x
∂/∂y

)
u = ∇ · C · ∇u = 0 (A.32)

We can now diagonalize the coefficient matrix C. This for to

C = U ·

(
λ1 0
0 λ2

)
· UT , (A.33)
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where U is unitary due to the symmetry of C, UT · U = 1. The geometric
interpretation of the operation U is a rotation. We now introduce transformed
coordinates x′ and y′ so that

∇ = U · ∇′ (A.34)

with ∇′ = (∂/∂x′, ∂/∂y′). In other words, the transformation matrix is given
as

U =

(
∂x′/∂x ∂y′/∂x
∂x′/∂y ∂y′/∂y

)
. (A.35)

Equation (A.31) becomes

λ1
∂2u

∂x′2 + λ2
∂2u

∂y′2
= 0. (A.36)

We have diagonalized the coefficients of the differential equation. For any
twice differentiable function f(z), is

u(x′, y′) = f
(√

λ2x
′ + i

√
λ1y

′
)

(A.37)

a solution of Eq. (A.36).
The analytical expression for the eigenvalues is:
We now distinguish three cases:

• The case detC = λ1λ2 = ac− b4/4 = 0 with b ̸= 0 and a ̸= 0 leads to
a parabolic PDE. This PDE is called parabolic because the quadratic
form Eq. (A.32) or (A.33) describes a parabola. (This is of course an
analogy. You have to replace the differential operators with coordinates
for this to work). Without restriction of generality, let λ2 = 0. Then
we get

∂2u

∂x′2 = 0. (A.38)

This is the canonical form of a parabolic PDE.

• The case detC = λ1λ2 = ac− b2/4 > 0 leads to an elliptic PDE. This
PDE is called elliptic because the quadratic form Eq. (A.32) or (A.33)
describes an ellipse for a constant right-hand side. (For λ1 = λ2 it
is a circle). We now convert the equation for the elliptical case to a
standardized form and introduce the scaled coordinates x′ =

√
λ1x

′′

and y′ =
√
λ2y

′′. Eq. (A.36) then becomes the canonical elliptic PDE

∂2u

∂x′′2 +
∂2u

∂y′′2
= 0. (A.39)
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The canonical elliptic PDE is therefore the Laplace equation, Eq. (A.39)
(here in two dimensions). Solutions of the Laplace equation are called
harmonic functions.

• The case detC = λ1λ2 = ac− b2/4 < 0 results in the so-called hyper-
bolic PDE. This PDE is called hyperbolic because the quadratic form
Eq. (A.32) or (A.33) for a constant right-hand side describes a hyper-
bola. Without restricting the generality, we now require λ1 > 0 and
λ2 < 0. Then we can again introduce scaled coordinates x′ =

√
λ1x

′′

and y′ =
√
−λ2y

′′ so that

∂2u

∂x′′2 − ∂2u

∂y′′2
=

(
∂u/∂x′′

∂u/∂y′′

)
·

(
1 0
0 −1

)
·

(
∂u/∂x′′

∂u/∂y′′

)
= 0. (A.40)

We can now use a further coordinate transformation, namely a rotation
by 45◦, to bring the coefficient matrix in Eq. (A.40) to a form in which
the diagonal elements are 0 and the secondary diagonal elements are 1.
This results in the differential equation

∂2u

∂x′′′∂y′′′
= 0, (A.41)

where x′′′′ and y′′′′ are the corresponding rotated coordinates. This
equation is the canonical form of a hyperbolic PDE and is equivalent to
Eq. (A.31) in the new variables x′′′ and y′′′.

For higher dimensional problems, we need to look at the eigenvalues
of the coefficient matrix C. The PDE is called parabolic if there is an
eigenvalue that vanishes, but all other eigenvalues are either greater or less
than zero. The PDE is called elliptic if all eigenvalues are either greater
than zero or less than zero. The PDE is called hyperbolic if there is exactly
one negative eigenvalue and all others are positive or if there is exactly one
positive eigenvalue and all others are negative. It is clear that for PDEs with
more than two variables, these three classes of PDEs are not exhaustive and
there are coefficient matrices that fall outside this classification scheme. For
problems with exactly two variables, this classification leads to the conditions
for the determinants of the coefficient matrix mentioned above.

These three types of 2nd-order linear PDEs can also be solved analytically
for some problems. In the following, we give an example of this.
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Example: We solve the one-dimensional wave equation.

∂2u

∂x2
− 1

c2
∂2u

∂t2
= 0 (A.42)

by separating the variables. To do this, we take the approach u(x, t) =
X(x)T (t), which leads to

1

X

∂2X

∂x2
=

1

c2
1

T

∂2T

∂t2
. (A.43)

In Eq. (A.43), the left-hand side depends only on the variable x, while
the right-hand side depends only on t. For any x and t, this equation can
only be fulfilled if both sides are equal to a constant and we thus obtain

1

X

∂2X

∂x2
= −k2 =

1

c2
1

T

∂2T

∂t2
. (A.44)

This results in the following two equations

∂2X

∂x2
+ k2X = 0

with the solution X(x) = e±ikx and

∂2T

∂t2
+ ω2T = 0

with the solution T (t) = e±iωt, where we have set ω2 = c2k2. have set.
This example needs initial conditions to be completed so that we can can
find a solution.
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