Notation Reference Guide
This section provides a comprehensive glossary of mathematical symbols used throughout the course.
Geometric and Kinematic Quantities
| \(\vec{r}\) |
Position vector |
All |
| \(\vec{u}(\vec{r})\) |
Displacement field |
4, 5, 6, 11 |
| \(u_x, u_y, u_z\) |
Displacement components |
4, 5, 6 |
| \(w(x)\) |
Beam deflection (transverse displacement) |
4, 10 |
| \(\theta(x)\) |
Rotation angle (slope) |
4, 10 |
| \(\kappa(x)\) |
Curvature of beam |
4, 10 |
| \(\varepsilon_0(x)\) |
Axial strain at beam axis |
4 |
Stress and Force Quantities
| \(\underline{\sigma}(\vec{r})\) |
Cauchy stress tensor (3×3 matrix) |
5, 8, 9, 12 |
| \(\sigma_{ij}\) |
Stress tensor component |
5, 8, 9, 12 |
| \(\sigma_{xx}, \sigma_{yy}, \sigma_{zz}\) |
Normal stresses (diagonal) |
5, 8, 9, 12 |
| \(\tau_{xy}, \tau_{yz}, \tau_{xz}\) |
Shear stresses (off-diagonal) |
5, 8, 9, 10, 11 |
| \(\sigma_1, \sigma_2, \sigma_3\) |
Principal stresses |
9, 12 |
| \(\sigma_m = I_1/3\) |
Mean stress (hydrostatic pressure) |
9, 12 |
| \(\underline{s}\) |
Deviatoric stress tensor |
12 |
| \(\sigma_e\) |
Equivalent (von Mises) stress |
12 |
| \(\sigma_y\) |
Yield stress (uniaxial) |
12 |
| \(\sigma_h\) |
Hydrostatic stress |
5, 12 |
Internal Force and Moment Quantities (Beams)
| \(N(x)\) |
Normal (axial) force |
3, 4, 10 |
| \(Q(x)\) |
Shear force |
3, 4, 10 |
| \(M(x)\) |
Bending moment |
3, 4, 10 |
| \(q(x)\) |
Distributed load (force per unit length) |
3, 4, 10 |
| \(I_y\) |
Second moment of area (moment of inertia) |
4, 10, 11 |
| \(A\) |
Cross-sectional area |
3, 4 |
Strain Quantities
| \(\underline{\varepsilon}\) |
Strain tensor (small strain) |
5, 6, 8, 9 |
| \(\varepsilon_{ij}\) |
Strain tensor component |
5, 6, 8, 9 |
| \(\varepsilon_{xx}, \varepsilon_{yy}, \varepsilon_{zz}\) |
Normal strains |
5, 6, 8 |
| \(\gamma_{xy}, \gamma_{yz}, \gamma_{xz}\) |
Engineering shear strains |
8 |
| \(\varepsilon_h\) |
Volumetric strain |
6, 8 |
Material Parameters
| \(E\) |
Young’s modulus (elastic modulus) |
4, 6, 8, 10 |
| \(\nu\) |
Poisson’s ratio |
6, 8, 11 |
| \(\mu = G\) |
Shear modulus |
6, 8 |
| \(\lambda\) |
Lamé’s first constant |
8 |
| \(K\) |
Bulk modulus |
8 |
| \(\alpha, k\) |
Drucker-Prager material parameters |
12 |
| \(c\) |
Cohesion |
12 |
| \(\phi\) |
Friction angle |
12 |
Operators and Special Symbols
| \(\nabla\) |
Nabla (del) operator |
Gradient, divergence, curl |
| \(\nabla \cdot\) |
Divergence operator |
\(\nabla \cdot \underline{\sigma}\) = stress divergence |
| \(\nabla^2\) |
Laplacian operator |
Second derivative |
| \(\partial_x\) or \(f_{,x}\) |
Partial derivative w.r.t. \(x\) |
Same notation, different styles |
| \(\underline{I}\) or \(\delta_{ij}\) |
Identity tensor |
Kronecker delta |
| \(\times\) |
Cross product |
\(\vec{a} \times \vec{b}\) |
| \(\otimes\) |
Outer product (tensor product) |
\(\vec{a} \otimes \vec{b}\) |
| \(:\) |
Double contraction |
\(\underline{A} : \underline{B} = A_{ij}B_{ij}\) |
Boundary Conditions and Geometry
| \(L\) |
Length of beam |
3, 4, 10 |
| \(h\) |
Height of cross-section |
4, 10, 11 |
| \(EI\) |
Flexural rigidity |
4, 10, 11 |
| \(K\) |
Effective length factor |
10 |
| \(\lambda = L/r\) |
Slenderness ratio |
10 |
Force and Moment Quantities (Rigid Bodies)
| \(\vec{F}\) |
Force vector |
1, 2, 3 |
| \(\vec{M}\) |
Moment (torque) vector |
1, 2, 3 |
| \(\vec{R}\) |
Resultant force |
1 |